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1 INTRODUCTION 
 
All over the world, the last decades have seen great progress in the professional development 
of investigation methods used in forensic technical investigation. Society, national legislation but 
also international cooperation in the fight against crime are increasingly pushing for assurance 
of the quality of this forensic examination by introducing accredited quality management systems 
(QMS).  
 
Consequence of this development is that applicants for forensic technical investigation expect 
the expert reports submitted to them to contain reliable results. 
 
The users of the forensic expert reports have to interpret the contents correctly. This implies that 
the results and conclusions should also include the degree of reliability of the measurement data 
provided.  
 
Enriching results of quantitative measurements with the calculated measurement uncertainty 
and the explanation thereof in the expert reports is were appropriate desirable and/or necessary. 
 
Naturally, statistics and, as a derivative thereof, the performance of measurement uncertainty 
calculations have been part of the professional training of forensic experts. Nevertheless, 
forensic experts often experience the performance of measurement uncertainty calculations as 
a difficult necessity.  
 
This guideline aims to provide information and practical help to anyone who is looking for 
applicable and understandable knowledge and worked out examples on how to apply 
measurement uncertainty in forensic technical methods. 
 
 

2 AIM 
 
The aim of this guideline is to share Best Practice for a practical approach covering quantitative 
measurements aspects. This in relationship with requirements of ISO 17025 [1] concerning 
areas of forensic science where uncertainty of measurements must be addressed. 
 
The examples in this guideline are straightforward, even for the more complex examples. This 
allows a wide application of this guide. The uncertainty measurement calculations are based on 
recognized literature (section 9) including the experience of the authors of this Guideline 
(appendix AIII). 
 
A step-by-step approach is present in the examples which allows understanding of the used 
measurement uncertainty calculations. The examples are offering the reader therefore a 
roadmap to calculate measurement uncertainty for his own methods. 
 
 

3 SCOPE 
 
The scope of this guideline focuses on measurement uncertainty calculations as applied in 
quantitative chemical and physical forensic investigation methods 
 
Uncertainty of measurements in forensic qualitative methods is a separate area of interest and 
is not explained in this guideline. 
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The manner in which information, originating from i.e. sampling aspects, results of validation 
studies or proficiency tests (PT) can be used for calculations of measurement uncertainty, are 
present in the worked-out examples as included in this guideline. 
 
The statistical models and formulas provided in chapter 7 are not to be interpreted as normative 
but serve as a framework to be used for calculating measurement uncertainty. There are several 
ways of doing the latter, and all these ways cannot be collected into one set of formulas. The 
examples provided in chapter 8 demonstrate this variety of ways to calculate measurement 
uncertainty, and are not direct examples of applying formulas provided in chapter 7. Moreover, 
the examples provided in sections 8.5-8.7 are more complex/advanced examples, added in 
order to illustrate the diversity of questions there may be about quantifying measurement 
uncertainty. 
 
 

4 DEFINITIONS 
 
The naming of definitions for specific focus areas that are used when validating (forensic) 
investigation methods and calculating measurement uncertainty helps to ensure that everyone 
has the same starting position to perform these activities. 
 
Although not exhaustive, the most frequently used terms and parameters are listed in the 
following paragraphs, they are taken from several sources (see Appendix 1). 
 
 

4.1 General Definitions 
 
Measurement uncertainty  
Several definitions for measurement uncertainty are available in literature. 
 
E.g. EURACHEM [2] gives the following definition in part 2.5: 
“non-negative parameter characterizing the dispersion of the quantity values being attributed to 
a measurand, based on the information used. 
 

NOTE: In general, for a given set of information, it is understood that the measurement uncertainty is associated with 
a stated quantity value attributed to the measurand. A modification of this value results in modification of the 

associated uncertainty.” 
 
Others state measurement uncertainty as a parameter, associated with the result of a 
measurement, that characterizes the dispersion of the values that could reasonably be attributed 
to the measurand'1. This parameter could be a standard deviation or another part of an interval 
indicating a certain confidence range. 
 
Most important in this connection is that not only the single measurement has to be considered 
but also the overall result of the test, so that all components are embraced. Some may be 
obtained by interpreting the statistical spread of results of a series, others have to be worked 
out from complementary methods regarding sampling plans or experience. 
 
Testing results should be the best approximation to the true value. Statistical random and 
systematic factor effects contribute to the uncertainty of measurement of the testing results. 
The latter effects should be eliminated as far as possible by using correction factors for instance. 
[3] 
 
 

 
1 Uncertainty in Measurement, Introduction and Examples, Kallner A, eJIFCC vol 13 no1: http://www.ifcc.org/ 
ejifcc/vol13no1/1301200103.htm (probably based on GUM) 
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4.2 Definitions related to measurement uncertainty calculations 
 
Uncertainty sources 
General sources of uncertainty2 include: equipment, unit under test, operator, method, 
calibration and environment. 
 
Uncertainty components 
General components of uncertainty3 are: Repeatability, Reproducibility, Stability, Bias, Drift, 
Resolution and Certified Reference Material. 
 
Repeatability 
Repeatability is the measurement precision under a set of repeatable conditions, means the 
variation among repeated measurements made on the same object (identical samples of it) 
using the same instrument, the same operator, the same laboratory conditions etc. To perform 
a repeatability test, one must continually repeat the measurement process under the same 
conditions until you record your desired number of samples. 
 
Reproducibility 
Reproducibility3 refers to the variation among measurements made on the same object (identical 
samples of it) using different instruments or different operators or different laboratory conditions 
etc. for each measurement degree of agreement between measurements or observations 
conducted on identical samples under different investigating situations like different operators, 
time and date, environmental conditions etc. 
 
Within lab reproducibility 
Within lab reproducibility4 is the precision obtained within a single laboratory over a longer period 
of time (generally at least several months) and takes into account changes like different analysts, 
different apparatus if available, different batches of reagents/ standards, different times, different 
environmental conditions. 
 
Between lab reproducibility 
Between lab reproducibility5 expresses the precision between the measurement results obtained 
at different laboratories. 
 
Stability 
Stability is the variation among measurements made on the same object (identical samples of 
it) under the same conditions (with respect to instruments, operators, laboratory conditions, etc.), 
but at different dates. It may be included in reproducibility assuming different dates is a kind of 
different laboratory conditions. 
 
Bias 
Bias is a quantitative term describing the difference between the average of measurements 
made on the same object and its true value6. Calculation of BIAS is possible with help of 
information received by calibration and standard measurements, blind (reference) samples and 
results of proficiency tests. 
The bias of an analytical method is usually determined by study of relevant reference materials 
or by spiking studies. Bias may be expressed as analytical recovery (value observed divided by 
value expected). 
 

 
2 https_www.isobudgets.com 
3 Based on Https//www.definitions.net/definition/Reproducibility 
4Adapted from https://www.favv-afsca.be/labos/erk-alg/_documents/03-11-2008-procedureENLAB-P-508-Measurement-uncertainty-

v.01_en.pdf and https://sisu.ut.ee/lcms_method_validation/41-precision-trueness-accuracy (august 2022) 
5 https://sisu.ut.ee/lcms_method_validation/41-precision-trueness-accuracy (august 2022) 
6 https:// www.itl.nist.gov/div898/handbook/  

https://www.favv-afsca.be/labos/erk-alg/_documents/03-11-2008-procedureENLAB-P-508-Measurement-uncertainty-v.01_en.pdf
https://www.favv-afsca.be/labos/erk-alg/_documents/03-11-2008-procedureENLAB-P-508-Measurement-uncertainty-v.01_en.pdf
https://sisu.ut.ee/lcms_method_validation/41-precision-trueness-accuracy
https://sisu.ut.ee/lcms_method_validation/41-precision-trueness-accuracy
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Bias should be shown to be negligible or corrected for, but in either case  
the uncertainty associated with the determination of the bias remains an essential component 
of the overall uncertainty.[2] 
 
Drift 
Drift refers to a continuous or incremental change over time in indication, due to changes in 
metrological properties of a measuring instrument.[4] 
 

NOTE Instrumental drift is related neither to a change in a quantity being measured nor to a change of any recognized 
influence quantity. 

 
Resolution 
Resolution is the smallest change in a quantity being measured that causes a perceptible 
change in the corresponding indication.[4] 
 

NOTE Resolution can depend on, for example, noise (internal or external) or friction. It may also depend on the value 
of a quantity being measured. 

 
Reference standard/material (RM) 
Material, sufficiently homogeneous and stable with respect to one or more specified properties, 
which has been established to be fit for its intended use in a measurement process. [5] 
 

NOTE: Properties can be quantitative or qualitative, e.g. identity of substances or species. 

 
Certified Reference Material (CRM) 
Certified Reference material (CRM) characterized by a metrologically valid procedure for one or 
more specified properties, accompanied by an CRM certificate that provides the value of the 
specified property, its associated uncertainty, and a statement of metrological traceability. [5] 
 
Standard uncertainty7 
Uncertainty of the result of a measurement expressed as a standard deviation 
 
Combined measurement uncertainty 
All uncertainties generated are usually expressed in the form of standard uncertainties. The root 
of the sum of the squared standard uncertainties results in the combined measurement 
uncertainty. 
 
Expanded uncertainty7 
Quantity defining an interval about the result of a measurement that may be expected to 
encompass a large fraction of the distribution of values that could reasonably be attributed to 
the measurand. 
 

• The fraction may be viewed as the coverage probability or level of confidence of the 

interval. 

• To associate a specific level of confidence with the interval defined by the expanded 

uncertainty requires explicit or implicit assumptions regarding the probability distribution 

characterized by the measurement result and its combined standard uncertainty. The 

level of confidence that may be attributed to this interval can be known only to the extent 

to which such assumptions may be justified. 

 
7 Basic definitions of uncertainty – NIST: https://physics.nist.gov › glossary,30/08/2022 
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Coverage factor7 
Numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an 
expanded uncertainty. 
 
Type A evaluation (of uncertainty) 7 
method of evaluation of uncertainty by the statistical analysis of series of observations 
 
Type B evaluation (of uncertainty) 7 
method of evaluation of uncertainty by means other than the statistical analysis of series of 
observations 
 
Precision 
Closeness of agreement between indications or measured quantity values obtained by replicate 
measurements on the same or similar objects under specified conditions. [4] 
 

NOTE 1 Measurement precision is usually expressed numerically by measures of imprecision, such as standard 
deviation, variance, or coefficient of variation under the specified conditions of measurement. 
 

NOTE 2 The ‘specified conditions’ can be, for example, repeatability conditions of measurement, intermediate 
precision conditions of measurement, or reproducibility conditions of measurement (see ISO 5725-1:1994). 
 

NOTE 3 Measurement precision is used to define measurement repeatability, intermediate measurement precision, 
and measurement reproducibility. 
 

NOTE 4 Sometimes “measurement precision” is erroneously used to mean measurement accuracy. 

 

Intermediate Precision Condition of Measurement 
Condition of measurement, out of a set of conditions that includes the same measurement 
procedure, same location, and replicate measurements on the same or similar objects over an 
extended period of time, but may include other conditions involving changes. [4] 
 

NOTE 1 The changes can include new calibrations, calibrators, operators, and measuring systems. 
 

NOTE 2 A specification for the conditions should contain the conditions changed and unchanged, to the extent 
practical. 
 

NOTE 3 In chemistry, the term “inter-serial precision condition of measurement” is sometimes used to designate this 
concept. 

 
Intermediate Precision 
Measurement precision under a set of intermediate precision conditions of measurement. [4] 
 
Relative Standard Deviation (RSD) 
A special form of the standard deviation, obtained from dividing the sample standard deviation 
by the absolute value of the sample mean. [6] 
It is commonly reported as a percentage and it gives an idea about how precise your data is.8 
 
 

5 REQUIREMENTS OF QUALITY MANAGEMENT STANDARD 
ISO 17025-2017 

 
The ISO IEC 17025 [1] is the general used quality management standard within forensic 
investigation institutions (“testing laboratories” according to 17025). To summarize, chapter 7.6. 
of the standard contains the following requirements concerning measurement uncertainty:  
Testing laboratories using accredited quantitative methods shall determine the corresponding 
measurement uncertainty. This determination shall include all significant contributions, including 
contributions resulting from sampling, using appropriate methods. If no precise calculation is 
possible, an estimation based on the underlying theoretical principles or practical experience of 
the method performance shall be made. 
 

 
8 https://www.statisticshowto.com/relative-standard-deviation/ (august 2022) 

https://www.statisticshowto.com/relative-standard-deviation/
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The measurement uncertainty in the measurement data must be determined for each method 
where the reported results can influence the interpretation by the customer or where legal 
requirements must be met. 
 
Some quantitative test methods show little or no variation in the mode of operation or the matrix 
and/or concentrations of the component being tested. For such methods it is not necessary to 
calculate the measurement uncertainty per individual study. However, the institute should be 
able to demonstrate that the critical aspects which may influence the measurement uncertainty 
are under control. 
 
Standardized methods, for example methods published by a national standardisation agency, 
shall be considered as validated. The therein published measurement uncertainty can be used 
directly, if the institute can demonstrate that it meets the requirements of these accepted 
methods. 
 
By verifying these ISO 17025 requirements with the intention and goal concerning the own 
calculations of measurement uncertainty in quantitative forensic investigations it can become 
determined that these requirements are reached. 
 
 

6 THE PROCESS OF MEASUREMENT UNCERTAINTY 
CALCULATIONS 

 

6.1 Basics 
 
Primarily, the effort and the procedure for determination of the measurement uncertainty is 
subject to the requirements for the measured value. They may result from statutory provisions, 
risk assessments, the customer's requirements, etc. 
 
The measurement uncertainty of a measurement procedure may contain numerous 
components. It can be assessed e.g. by means of a modelling approach or an integrative 
approach. 
 
 

6.2 Modelling approach: 
 
In the modelling approach (a “bottom-up approach”), a model of the measurement is created, 
as described in GUM [7]. In the course of such action, the measurement procedure can be 
divided into individual modules for which individual uncertainties can be determined. A cause-
effect diagram (fishbone or lshikawa diagram) is recommended for depicting the individual 
components. 
 
For details on the procedure, see [2]. 
 
The modelling approach either delivers a measurement uncertainty for the overall procedure or 
uncertainty contributions from individual modules of the overall procedure which are combined 
for a total uncertainty pursuant to the law of propagation of uncertainty. 
 
This example given in the guideline use the modelling approach:  
 

• Quantifying Delta-9-Tetrahydrocannabinol (THC) in Blood example using the 

Measurement Uncertainty Calculator (MUCalc) (Chapter 8.5) 

 

6.3 Integrative approach 



  
APPROVED BY ENFSI BOARD ON 15.02.2024 

 

 

 

Page 9 of 100           GDL QCC-GDL-001       001  15.04.2024 

    

 
In this indirect approach (a “top-down approach”), several sources of uncertainty are determined 
in an integrative manner. Usually, the results of the quality assurance sample analytics are used 
to determine the measuring accuracy. Uncertainty components not sufficiently considered 
during quality assurance must be determined in addition. 
 
Trueness of measurement is determined using the results of analytics of certified matrix 
reference material if possible. The results from comparative measurements, performance tests 
or recovery experiments may also be used.  
 
Common approaches according to Guidelines on measurement uncertainty, CXG 54-2004, 
revised in 2021 [8] are: 

• Single lab validation: uncertainty of results obtained using the same procedure in a single 

laboratory under varying conditions 

• Interlaboratory validation: uncertainty of results obtained using the same procedure in 

different laboratories 

• Proficiency testing: uncertainty of results obtained using the same sample(s) in different 

laboratories 

 
Examples for this approach are as well described in detail e.g. in NORDTEST Technical Report 
TR 569 "Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories" 
[9]. 
 
The examples given in this guideline, that use types of the integrative approach are: 
 

• Calibration of thermometers (Chapter 8.1) 

• Quantification of MDMA in powders, mixtures and tablets by high performance liquid 

chromatography (HPLC-DAD), (Chapter 8.2) 

• Quantitative determination of cocaine in seizures by HPLC DAD method, (Chapter 8.3) 

• Determination of ethanol in blood using headspace gas chromatography with flame 

ionization detector (HS-GC-FID), (Chapter 8.4) 

• Predicting net weights of khat mardoufs (Chapter 8.6) 

• Velocity estimation on a speeding car in video images (Chapter 8.7) 

 
Whatever approach is used, it should be scientifically accepted. None of the following described 
methods may be said to be better than any other. [8] 
 
 

6.4 Sources of uncertainty 
 
Although it is assumed that a “true value” of a quantity being measured exists, this true value is 
unknown so is the measurement error. By evaluating the measurement uncertainty an interval 
can be given within quantitative values will lie with a stated coverage probability. [8] 
  
Significant uncertainty contributions may arise from many possible sources, including examples 
such as sampling, matrix effects and interferences, environmental conditions, uncertainties of 
masses and volumetric equipment, reference values, approximations and assumptions 
incorporated in the measurement method and procedure, as well as random variation. Such 
uncertainty contributions having no significant influence on the total uncertainty can be 
disregarded. 
 

NOTE: the focus should lie on the identification and evaluation of the main components of measurement uncertainty 

especially on systematic components as they cannot be reduced by repeating measurements! [8] 
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In order to assess the measurement uncertainty, all steps of the process performed in the lab 
must be considered individually, if applicable. 
 
Thus, the following inherently relevant sources of uncertainty could be compiled for a certain 
examination procedure, among others: 
 
(1) Weighing uncertainties 
(2) Volume uncertainties of pipettes and volumetric flasks 
(3) Fluctuations of density 
(4) Temperature effects 
(5) Metrological traceability 
(6) Homogeneity of the sampling material 
(7) Matrix of the sampling material 
(8) (Complex) steps in preparation of the sample 
(9) Stability of the measuring signal 
(10) Calibration of measuring device 
 
lf the assessment finds that e.g. the uncertainty contributions 1) to 5) do not have significant 
influence on the overall uncertainty in comparison to the uncertainty contributions 6) to 10), they 
may be disregarded. 
 
 

6.5 Process 
 
In principle uncertainty estimation is simple and the following step-by-step approach (see [2]), 
summarises the tasks needed in order to obtain an estimate of the uncertainty associated with 
a measurement result, please see there for further details. 
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Figure 6.5-1: The uncertainty estimation process 
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6.6 Frequency of determination of the measuring uncertainty 
 
On principle, the measurement uncertainties of the observed measured variables determined 
with a test procedure shall be assessed once; this can be performed e.g. within the scope of 
validation. 
 
The assessment must be reviewed, e.g. if 
 

• internal or external quality assurance measures indicate there are issues 

• new findings are determined 

• significant changes are made to the analysis procedure 

• new or other analytical equipment is used 

 
 

7 STATISTICAL MODELS FOR DETERMINATION OF 
MEASUREMENT UNCERTAINTY BASED ON INTRA-LAB 
RESULTS OR PROFICIENCY TESTS 

 
Note that what is described in this document is a guideline, and that alternative approaches may 
be acceptable as well. It is preferable that alternative approaches can be found in scientific 
literature. 
 
In Annex I, it is described in what various ways determination of measurement uncertainty based 
on intra-lab results or proficiency tests may take place, and what the logic behind this is. In the 
current section we describe this from a practical point of view, concentrating on which formulas 
may be used for what situations. 
 
Overall, the situation is such that 1 or more measurements are performed in order to estimate 
some real (nominal) number. We will refer to the first as X1,...,Xn and to the second as m. The 
measurements are assumed to follow a so-called normal or Gaussian distribution, cf. [ref 
Gauss], with m as its mean value and σ as its standard deviation. The square of this is called 
the variance. 
 
If the number of measurements is 1 and the standard deviation is known, based on the outcome 
x of the measurement, an approximate 95% confidence interval may be determined of the 
unknown real value m by evaluation of the inequality 
 

|x-m| ≤ 2σ.9 
 

In the case that there are more measurements, one may use the mean 𝑋̅=(X1+...+ Xn)/n in order 
to estimate m. Typically the mean has a lower standard deviation than σ, namely, it has a 
standard deviation of σ/√n. An approximate 95% confidence interval for m is determined by the 
inequality 
 

|𝑥̅-m| ≤ 2σ/√n 
 
In general the standard deviation is unknown. This is dealt with by using an estimation S instead 
of σ, where 
 

 
9 For an exact interval the number (coverage factor) 1,96 is used instead of 2. 
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𝑆2 =
1

𝑛 − 1
∑ (𝑋𝑖 − 𝑋̅)2

𝑛

𝑖=1
 

 
If the assumption of normality holds, then it is a general result that the random variable 

(𝑋̅ − 𝑚)/(𝑆/√𝑛) has a so-called t distribution with n-1 degrees of freedom. Coverage factors for 

t distributions can be found in statistical tables that are easily available.  
 
An approximate 95% confidence interval for m is determined by the inequality 
 

|𝑥̅-m| ≤ 𝑡𝑛−1 ; 97.5%s/√n, 

 
with 𝑡𝑛−1 ; 97.5% the 97.5% percentile of a t distribution with n-1 degrees of freedom. 

 
In the standard casework that this guideline concentrates on, besides the above there is usually 
also a systematic bias component involved in measurements, and it is unknown. In the Annex it 
is described how to obtain 95% confidence intervals for such situations. 
 
In the framework of within-laboratory estimation of measurement uncertainty, repeated 
measurements are performed within the laboratory on a material for which the measurand is 
known, for example certified reference material (CRM) provided by an institute of standards or 
unit conducting proficiency tests. We denote the value of this measurand as 𝑚CRM, which is 

given by the supplier, together with the variance 𝜎CRM
2 . Now if the measurements are again 

denoted as xi, it is reasonable to look at the differences between the measurements and the 
measurand, 𝑑𝑖 = 𝑥i − 𝑚CRM,  and the so-called mean square deviation (𝑀𝑆𝐷), i.e. 
 

MSD𝑤 =
1

𝑝
∑ 𝑑𝑖

2

𝑝

𝑖=1

=
1

𝑝
∑(𝑥𝑖 − 𝑚CRM)2

𝑝

𝑖=1

 

 
is defined. In the literature it is common to refer to the root mean square deviation (𝑅𝑀𝑆), which 

is the square root of 𝑀𝑆𝐷, i.e. 𝑅𝑀𝑆 = √𝑀𝑆𝐷. It is commonly suggested to use the following 
standard deviation of 𝑥̅-m: 
 

𝑢 = √MSD𝑤 + 𝜎CRM
2 +

𝑠𝑅𝑤
2

𝑛
, 

 

with 𝑠𝑅𝑤

2   denoting the intermediate precision of the lab, which is for example determined as the 

variance within the lab of a series of measurements on a Shewhart card. A 95% confidence 
interval then is given via: 
 

|𝑥̅ − 𝑚| ≤ 2 ∙ √𝑀𝑆𝐷𝑤 + 𝜎CRM
2 +

𝑠𝑅𝑤

2

𝑛
 

 
In the framework of determination of measurement uncertainty based on proficiency tests we 
have the following. Here a lab participates in p tests, generating results xi for i=1,...,p, which are 
compared to the mean reported results 𝑦̅𝑖 over the other laboratories that participate. Now the 
differences are calculated as 
 

𝑑𝑖 = 𝑥𝑖 − 𝑦̅𝑖, 

 
and the counterpart of MSD above is 
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𝑀𝑆𝐷 =
1

𝑝
∑ 𝑑𝑖

2

𝑝

𝑖=1

=
1

𝑝
∑(𝑥𝑖 − 𝑦̅𝑖)2

𝑝

𝑖=1

 

 
and the standard uncertainty is taken as  
 

𝑢 = √𝑀𝑆𝐷 +
𝑠𝑅𝑤

2

𝑛
  

 
A 95% confidence interval then is given via: 
 

|𝑥̅ − 𝑚| ≤ 2 ∙ √𝑀𝑆𝐷 +
𝑠𝑅𝑤

2

𝑛
 

 
In similar approaches an extra term is introduced compensating for the fact that the terms 𝑦̅𝑖 are 
considered as the ground truth of the nominal values mi. 
 
A different approach to the above separates the bias contribution from the standard deviation u 
that is used. 
 
It expresses the bandwidth of the confidence intervals in terms of 
 

|𝐵|̂𝑤 + 2 ∙ √𝜎CRM
2 +

𝑠𝑅𝑤

2

𝑛
 

 
in the case of within lab calculation of measurement uncertainty, and 
 

|𝐵|̂ + 2 ∙ √
𝑠𝑅𝑤

2

𝑛
 

 

in case of proficiency testing. Here |𝐵|̂ is the mean absolute value, that is, 
 

|𝐵|̂ =
1

𝑝
∑|𝑥𝑖 − 𝑦̅𝑖|

𝑝

𝑖=1

 

 

The corresponding formula for the case of within-lab MU calculation is 
 

|𝐵|̂𝑤 =
1

𝑝
∑|𝑥𝑖 − 𝑚CRM|

𝑝

𝑖=1

 

 
 

7.1 Relative uncertainty 
 
In the case where a model is used with relative uncertainty the formulas are a bit more involved. 
The model that is used is typically that  
 

Xi /m = 1+b+Ei 
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with Ei being some random error term that is from a normal distribution with mean 0 and standard 
deviation  
 
CV (coefficient of variation). In the framework of within-laboratory estimation of measurement 
uncertainty, repeated measurements are again performed within the laboratory on a material for 
which the measurand is known, for example certified reference material (CRM) provided by an 
institute of standards or unit conducting proficiency tests. The value of this measurand is given 
as 𝑚CRM, together with the relative standard deviation %𝜎. Now if the measurements are again 
denoted as xi, it is reasonable to look at the relative differences between the measurements and 
the measurand, 𝑑𝑖 = (𝑥𝑖 − 𝑚CRM) 𝑚CRM⁄ = 𝑥i/𝑚CRM − 1,  and the 
 

𝑀𝑆𝐷𝑤,𝑟 =
1

𝑝
∑ 𝑑𝑖

2

𝑝

𝑖=1

=
1

𝑝
∑(𝑥𝑖/𝑚CRM − 1)2

𝑝

𝑖=1

 

 

with 𝑅𝑀𝑆𝑤,𝑟 = √𝑀𝑆𝐷𝑤,𝑟. With n measurements, it is suggested to use the following standard 

deviation of  𝑥̅ 𝑚CRM⁄ − 1: 
 

𝑢 = √MSD𝑤,𝑟 + 𝐶𝑉CRM
2 + 𝐶𝑉2/𝑛, 

 
where CV is determined within the lab by means of series of relative measurements. A 95% 
confidence interval then is given via: 
 

|
𝑥̅

𝑚
− 1| ≤ 2 ∙ √MSD𝑤,𝑟 + 𝐶𝑉CRM

2 + 𝐶𝑉2/𝑛 

 
In the framework of determination of measurement uncertainty based on proficiency tests we 
have the following. The lab participates in p tests, generating results Xi for i=1,...,p, which are 

compared to the mean reported results 𝑌̅𝑖 over the other laboratories that participate.  
 
Now the relative differences are calculated as  
 

𝑑𝑖 =
𝑥𝑖

𝑦̅𝑖
− 1, 

 
and the counterpart of MSD above is 
 

𝑀𝑆𝐷𝑟 =
1

𝑝
∑ 𝑑𝑖

2

𝑝

𝑖=1

=
1

𝑝
∑ (

𝑥𝑖

𝑦̅𝑖
− 1)

2
𝑝

𝑖=1

 

 
and with n measurements the standard uncertainty is taken as 
 

𝑢 = √𝑀𝑆𝐷𝑟 + 𝐶𝑉2/𝑛 . 
 
A 95% confidence interval then is given via: 
 

|
𝑥̅

𝑚
− 1| ≤ 2 ∙ √𝑀𝑆𝐷𝑟 +

𝐶𝑉2

𝑛
       

 
In similar approaches an extra term is introduced compensating for the fact that the terms 𝑦̅𝑖 are 
considered as the ground truth of the nominal values mi. A different approach to the above 
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separates the bias contribution from the standard deviation u that is used. It expresses the 
bandwidth of the confidence intervals in terms of 
 

|𝐵|̂𝑤,𝑟 + 2 ∙ √𝐶𝑉CRM
2 + 𝐶𝑉2/𝑛  

 
in the case of within lab calculation of measurement uncertainty, and 
 

|𝐵|̂𝑟 + 2 ∙ √𝐶𝑉2/𝑛 

 

in case of proficiency testing. Here |𝐵|̂𝑤,𝑟 and |𝐵|̂𝑟 are the mean absolute relative values, that 

is, 
 

|𝐵|̂𝑤,𝑟 =
1

𝑝
∑ |

𝑥𝑖

𝑚
− 1|

𝑝
𝑖=1    and   |𝐵|̂𝑟 =

1

𝑝
∑ |

𝑥𝑖

𝑦̅𝑖
− 1|

𝑝
𝑖=1  

 
 

7.2 Example with interpretation 
 
In the example, the task is to calculate the measurement uncertainty for measurements of 
conductivity (in units of Siemens per meter [S/m]) made on Swedish “10 kronor”-coins, with the 
purpose to detect fake coins. 
 
 

7.2.1 Within-laboratory estimation 
 
In this case, a specimen of a genuine coin is sent to a laboratory, with the information that its 
conductivity is 15.9 S/m with standard deviation 0.05 S/m. This means that 𝑚CRM = 15.9 and 

𝜎CRM
2 = 0.052=0.0025. 

 
The laboratory makes 𝑝 = 20 measurements on the coin rendering the following results: 
 

15.80, 15.75, 15.72, 15.67, 15.88, 15.79, 16.03, 16.03, 15.96, 16.05, 
15.93, 15.92, 16.04, 15.92, 16.04, 16.12, 16.01, 15.80, 15.71, 15.66 
 

At laboratory A, Shewhart charts have been used for a long time capturing the intermediate 
precision of measurements giving an estimate 𝑠𝑅𝑤 = 0.264. 
 
 

7.2.1.1 Absolute uncertainty 
 
From the data we calculate 
 

𝑀𝑆𝐷𝑤 =  
1

𝑝
∑(𝑥𝑖 − 𝑚CRM)2

𝑝

𝑖=1

=
1

20
∙ [(15.80 − 15.9)2 + (15.75 − 15.9)2 + ⋯ + (15.66 − 15.9)2]

≈ 0.01980 
 
Hence, a 95% confidence interval for the true value of the conductivity of a “10 kronor”-coin  
using one single measurement is 
 

|𝑥 − 𝑚| ≤ 2 ∙ √0.01980 + 0.0025 + 0.2642 ≈ 0.61. 
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A measurement should thus be reported with a margin ±0.61 S/m. 
 
Using 𝑛 measurements the corresponding confidence interval is 
 

|𝑥̅ − 𝑚| ≤ 2 ∙ √0.01980 + 0.0025 +
0.2642

𝑛
. 

 
If for instance the average of two measurements is 15.20 S/m, the margin to be reported is 

±2 ∙ √0.01980 + 0.0025 + 0.2642 2⁄ ≈ ±0.48 S/m. 

 
The alternative treating of bias is to calculate 
 

|𝐵|̂𝑤 =
1

𝑝
∙ ∑|𝑥𝑖 − 𝑚CRM|

𝑝

𝑖=1

= 

=
1

20
∙ [|15.80 − 15.9| + |15.75 − 15.9| + ⋯ |15.66 − 15.9|] ≈ 0.1235. 

 
and a 95% confidence interval for the true value of the conductivity of a “10 kronor”-coin using 
one single measurement is 
 

|𝑥 − 𝑚| ≤ |𝐵|̂ + 2 ∙ √𝜎CRM
2 + 𝑠𝑅𝑤

2 = 0.1235 + 2 ∙ √0.0025 + 0.2642 ≈ 0.66. 

 
A measurement should thus be reported with a margin ±0.66 S/m. 
 
Using 𝑛 measurements the corresponding confidence interval is 
 

|𝑥̅ − 𝑚| ≤ 0.1235 + 2 ∙ √0.0025 +
0.2642

𝑛
. 

 
So, with an average 15.20 S/m of two measurements, the margin to be reported is 
 

 ±0.1235 + 2 ∙ √0.0025 + 0.2642 2⁄ ≈ ±0.51 S/m. 
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7.2.1.2 Relative uncertainty 
 
At laboratory A, the coefficient of variation reflecting intermediate precision is estimated as 𝐶𝑉 =
0.0165 (1.65%). The coefficient of variation for the certified reference measurement can be 

calculated as 𝐶𝑉CRM = 𝜎CRM 𝑚CRM⁄ = 0.05 15.9 ≈ 0.0031 (0.31%)⁄ .  
 
From the data we calculate 
 

𝑀𝑆𝐷𝑤,𝑟 =
1

𝑝
∑ (

𝑥𝑖

𝑚CRM

− 1)
2

𝑝

𝑖=1

= 

=
1

20
∙ [(

15.80

15.9
− 1)

2

+ (
15.75

15.9
− 1)

2

+ ⋯ (
15.66

15.9
− 1)

2

] ≈ 7.8 ∙ 10−5. 

 
The relative 95% expanded uncertainty for one single measurement then becomes 
 

2 ∙ √MSD𝑤,𝑟 + 𝐶𝑉CRM
2 + 𝐶𝑉2 = 2 ∙ √7.8 ∙ 10−5 + (0.05 15.9⁄ )2 + 0.01652 ≈ 0.038 = 3.8%. 

 
With an average 15.20 S/m of two measurements the relative 95% expanded uncertainty 
becomes 
 

2 ∙ √MSD𝑤,𝑟 + 𝐶𝑉CRM
2 +

𝐶𝑉2

2
= 2 ∙ √7.8 ∙ 10−5 + (0.05 15.9⁄ )2 +

0.01652

2
≈ 0.030 = 3.0%. 

 
For this result, the margin to be reported is ±0.030 ∙ 15.20 ≈ ±0.46 S/m. 
 
The alternative treating of bias is to calculate 
 

|𝐵|̂𝑤,𝑟 =
1

𝑝
∑ |

𝑥𝑖

𝑚
− 1|

𝑝

𝑖=1

=
1

20
[|

15.80

15.9
− 1| + |

15.75

15.9
− 1| + ⋯ + |

15.66

15.9
− 1|] ≈ 0.0078. 

 
and the relative 95% expanded uncertainty for one single measurement then becomes 
 

|𝐵|̂𝑤,𝑟 + 2 ∙ √𝐶𝑉CRM
2 + 𝐶𝑉2 = 0.0078 + 2 ∙ √(0.05 15.9⁄ )2 + 0.01652 ≈ 0.041 = 4.1%. 

 
With an average 15.20 S/m of two measurements the relative 95% expanded uncertainty 
becomes 
 

|𝐵|̂𝑤,𝑟 + 2 ∙ √𝐶𝑉CRM
2 +

𝐶𝑉2

𝑛
= 0.0078 + 2 ∙ √(0.05 15.9⁄ )2 +

0.01652

2
≈ 0.032 = 3.2%. 

 
For this result, the margin to be reported is ±0.032 ∙ 15.20 ≈ ±0.49 S/m. 
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7.2.2 Using results from proficiency test 
 
In this case, “10 kronor”-coins, all genuine, are sent to laboratories participating in 9 proficiency 
tests for measurement of conductivity.   
The measurement results from the 9 tests are summarised in Table 7.2-1. 
 

Test (𝑖) Reported conductivity 
from laboratory A (𝑥𝑖) 

Average reported 
conductivity from the 

other labs (𝑦̅𝑖) 

1 16.3 S/m 16.2 S/m 

2 15.8 S/m 15.7 S/m 

3 16.0 S/m 16.1 S/m 

4 15.2 S/m 15.5 S/m 

5 15.7 S/m 15.9 S/m 

6 16.1 S/m 16.0 S/m 

7 15.9 S/m 15.9 S/m 

8 16.0 S/m 16.1 S/m 

9 15.9 S/m 15.9 S/m 

 
Table 7.2-1: Results from proficiency test of measurements on Swedish “10 kronor”-coins. 

 
Now, assume laboratory A is supposed to calculate their measurement uncertainty with help 
from the results from the other labs participating in the proficiency test. 
 
 

7.2.2.1 Absolute uncertainty 
 
The number of tests, 𝑝 = 9 and 𝑀𝑆𝐷 is calculated from the data in Table 7.2-1 as 
 

𝑀𝑆𝐷 =
1

𝑝
× ∑ 𝑑𝑖

2

𝑝

𝑖=1

=
1

9
∑(𝑥𝑖 − 𝑦̅𝑖)2

9

𝑖=1

= 

=
1

9
∙ [(16.3 − 16.2)2 + (15.8 − 15.7)2 + ⋯ + (15.9 − 15.9)2] ≈ 0.020. 

 
As was given in section 7.2.1, laboratory A’s estimate of the uncertainty due to repeatability 
within laboratory is 𝑠𝑅𝑤 = 0.264. Hence, a 95% confidence interval for the true value of the 
conductivity of a “10 kronor”-coin using one single measurement is 
 

|𝑥 − 𝑚| ≤ 2 ∙ √0.020 + 0.2642 ≈ 0.60. 
 
A measurement should thus be reported with a margin ±0.60 S/m. 
 
Using 𝑛 measurements the corresponding confidence interval is 
 

|𝑥 − 𝑚| ≤ 2 ∙ √0.020 +
0.2642

𝑛
. 

 
With an average 15.20 S/m of two measurements the margin to be reported is 
 

 ±2 ∙ √0.020 + 0.2642 2⁄ ≈ ±0.47 S/m. 

 
The alternative treating of bias is to calculate 
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|𝐵|̂ =
1

𝑝
∑|𝑥𝑖 − 𝑦̅𝑖|

𝑝

𝑖=1

=
1

9
∙ [|16.3 − 16.2| + |15.8 − 15.7| + ⋯ |15.9 − 15.9|] ≈ 0.1111. 

 
and a 95% confidence interval for the true value of the conductivity of a “10 kronor”-coin using 
one single measurement is 
 

|𝑥 − 𝑚| ≤ |𝐵|̂ + 2 ∙ √𝑠𝑅𝑤

2 = 0.111 + 2 ∙ √0.2642 ≈ 0.64 

 
A measurement should thus be reported with a margin ±0.64 S/m. 
 
Using 𝑛 measurements the corresponding confidence interval is 
 

|𝑥 − 𝑚| ≤ 0.111 + 2 ∙ √
0.2642

𝑛
 

 
Thus, with an average 15.20 S/m of two measurements, the margin to be reported is 

 ±0.1111 + 2 ∙ √0.2642 2⁄ ≈ ±0.48 S/m. 

 
 

7.2.2.2 Relative uncertainty 
 
As was given section 7.2.1.2, at laboratory A, the coefficient of variation reflecting intermediate 
precision is estimated as 𝐶𝑉 = 0.0165 (1.65%). 
 
From the data in Table 7.2-1 we calculate 
 

𝑀𝑆𝐷𝑟 =
1

𝑝
∑ (

𝑥𝑖

𝑦̅𝑖
− 1)

2
𝑝

𝑖=1

=
1

9
∙ [(

16.3

16.2
− 1)

2

+ (
15.8

15.7
− 1)

2

+ ⋯ + (
15.9

15.9
− 1)

2

] ≈ 8.1 ∙ 10−5. 

 
 
The relative 95% expanded uncertainty for one single measurement then becomes 
 

2 ∙ √𝑀𝑆𝐷𝑟 + 𝐶𝑉2 =  2 ∙ √8.1 ∙ 10−5 + 0.01652 ≈ 0.038 = 3.8%.      
 
With an average 15.20 S/m of two measurements the relative 95% expanded uncertainty 
becomes 
 

2 × √𝑀𝑆𝐷𝑟 +
𝐶𝑉2

2
= 2 ∙ √8.1 ∙ 10−5 +

0.01652

2
≈ 0.029 = 2.9%.       

 
For this result, the margin to be reported is ±0.029 ∙ 15.20 ≈ ±0.44 S/m. 
 
The alternative treating of bias is to calculate 
 

|𝐵|̂𝑟 =
1

𝑝
∑ |

𝑥𝑖

𝑦̅𝑖
− 1|

𝑝

𝑖=1

=
1

9
∙ [|

16.3

16.2
− 1| + |

15.8

15.7
− 1| + ⋯ |

15.9

15.9
− 1|] ≈ 0.0070. 

 



  
APPROVED BY ENFSI BOARD ON 15.02.2024 

 

 

 

Page 21 of 100           GDL QCC-GDL-001       001  15.04.2024 

    

The relative 95% expanded uncertainty for one single measurement then becomes 
 

|𝐵|̂𝑟 + 2 ∙ √𝐶𝑉2 = 0.0070 + 2 ∙ √0.01652 = 0.040 = 4.0%. 
 
With an average 15.20 S/m of two measurements the relative 95% expanded uncertainty 
becomes 
 

|𝐵|̂𝑟 + 2 ∙ √
𝐶𝑉2

2
= 0.0070 + 2 ∙ √

0.01652

2
= 0.030 = 3.0%. 

 
For this result, the margin to be reported is ±0.030 ∙ 15.20 ≈ ±0.46 S/m. 
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8 EXAMPLES OF CALCULATIONS OF MEASUREMENT 
UNCERTAINTY 

 
 

8.1 Calibration of thermometers 
 
At the National Bureau of Investigation Forensic Laboratory in Finland, DNA reagents are stored 
in refrigerators. To ensure proper storage temperature, digital thermometers are used to monitor 
the temperature within the refrigerators. Every couple of years, the thermometers are calibrated 
by comparing them against two reference thermometers to confirm they are still accurate and 
also to determine their measurement uncertainty. This example demonstrates the calculations 
for the calibration and the determination of the measurement uncertainty for a single 
thermometer, using an integrative approach (see chapter 6). 
 
The thermometer to be calibrated is a digital thermometer that displays the temperature to one 
decimal precision. The thermometer is calibrated using the ice point method where ice is mixed 
with cold water in order to produce ice water with 0 °C temperature. To this end, the ice water is 
measured 4 times with the thermometer to be calibrated as well as one of the reference 
thermometers. The second reference thermometer is only used to verify that the measurements 
from the first reference are correct and only one measurement is made with this thermometer. 
The reading from the second thermometer is not used for the calculations and is therefore 
excluded from the following. 
 
The four measurements in degrees Celsius with both thermometers are as follows: 
 

Thermometer Measurement 1 Measurement 2 Measurement 3 Measurement 4 

1321-014 0.4 0.1 0.2 -0.1 

Reference 648 -0.1 0.1 0.0 -0.1 

Table 8.1-1: Measurements results obtain from the thermometer in calibration and the reference thermometer. 

 
The measurement model is given by the formula 
 

𝑡 = 𝑚 + 𝛿𝑟 + 𝛿𝑐, 
 
where 𝑡 is the final temperature, 𝑚 is the measured value, 𝛿𝑟 is the correction due to rounding 

and 𝛿𝑐 is the correction due to systematic error detected in calibration. Here, 𝛿𝑟 is assumed to 
be zero since the rounding error should produce no systematic bias. Regardless, the uncertainty 
of the rounding error must still be taken into account. From this measurement model, the total 
uncertainty of the measurement 𝑢(𝑡) can be derived as 
 

𝑢(𝑡) = √𝑢(𝑚)2 + 𝑢(𝛿𝑟)2 + 𝑢(𝛿𝑐)2, 
 

where the square root is taken over the added squared standard uncertainties of each individual 
component in the measurement model. Thus, to determine the overall measurement 
uncertainty, it is enough to know the uncertainties of each individual component. 
 
As in practice only single measurements are made with the thermometers, the uncertainty 
related to the measurement 𝑢(𝑚) is determined based on experience accordingly to the 
recommendations from the Finnish center of metrology MIKES. The uncertainty 𝑢(𝑚) is 

assumed to be uniformly distributed in an interval of length 𝐿 centered around 𝑚. Here it is 
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assumed that 𝐿 is 1 degree Celsius, i.e. there is no more than ±0.5 degrees error due to the 
inaccuracy of the measurement. 
 
Based on these assumptions, the standard uncertainty of the measurement can be calculated 
as the standard deviation of the corresponding uniform distribution 
 

𝑢(𝑚) =  
𝐿

2√3
 =  

1

2√3
 ≈ 0.3. 

 
Uncertainty of the rounding correction 𝑢(𝛿𝑟) is determined in a similar way.  As the thermometer 
measures temperature at one decimal precision, the value read from the thermometer is ±0.05 
degrees from the actual measured value. Thus, the uncertainty can be considered to be 
uniformly distributed along an interval of length 0.1 centered around the actual value and it can 
be calculated as 
 

𝑢(𝛿𝑟) =  
0.1

2√3
≈ 0.03. 

 
Finally, there is the correction 𝛿𝑐 from the calibration itself. This term represents the deviation of 
the measurements of the thermometer to be calibrated from the reference thermometer and it 
has its own uncertainty 𝑢(𝛿𝑐) due to the uncertainties in calibration of the reference thermometer 
itself as well as due to the finite number of repeat measurements during the actual calibration 
process. 
 
Firstly, the means of the measurements given in the table earlier, in degrees Celsius, are  
 

𝑥̅𝑐𝑎𝑙 =
0.4 + 0.1 + 0.2 − 0.1

4
= 0.15 

 
for the thermometer to be calibrated and 
 

𝑥̅𝑟𝑒𝑓 =
−0.1 + 0.1 + 0.0 − 0.1

4
= −0.025 

 
for the reference. The corresponding (corrected) standard deviations are given by 
 

𝑠𝑐𝑎𝑙 = √
∑ (𝑥𝑖 − 𝑥̅𝑐𝑎𝑙)24

𝑖=1

4 − 1
=  √

(0.4 − 0.15)2 + (0.1 − 0.15)2 + (0.2 − 0.15)2 + (−0.1 − 0.15)2

3
≈ 0.208 

 
for the thermometer to be calibrated and by 
 

𝑠𝑟𝑒𝑓 = √
∑ (𝑥𝑖 − 𝑥̅𝑟𝑒𝑓)

24
𝑖=1

4 − 1
=  √

(−0.1 + 0.025)2 + (0.1 + 0.025)2 + (0.0 + 0.025)2 + (−0.1 + 0.025)2

3
≈ 0.096 

 
for the reference. From these values, the standard uncertainties of the means are obtained by 
dividing the standard deviations by the square root of the number of the observations: 
 

𝑢(𝑥̅𝑐𝑎𝑙) =
𝑠𝑐𝑎𝑙

√4
≈ 0.104, 

 

𝑢(𝑥̅𝑟𝑒𝑓) =
𝑠𝑟𝑒𝑓

√4
≈ 0.048. 
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The correction term 𝛿𝑐 is a bias term, which reflects how far away from the "true" value, indicated 
by the reference thermometer, the values from the thermometer to be calibrated tend to be on 
average.  
 
Its value is obtained by subtracting the mean of the measurements from the thermometer to be 
calibrated from the reference measurement mean, i.e. 𝛿𝑐 =  𝑥̅𝑟𝑒𝑓 − 𝑥̅𝑐𝑎𝑙 = −0.025 − 0.15 =

−0.175. The uncertainty of this term then comprises the standard uncertainties of the means, 
the calibration uncertainty of the reference thermometer and the uncertainties induced by 
rounding for both thermometers. The calibration of uncertainty of the reference thermometer is 

given by its calibration report and, in this instance, is 𝑢(𝛿𝑐𝑟𝑒𝑓) = 0.01 and centered at zero. As 

the effect of rounding is the same in both cases, the value for this uncertainty 𝑢(𝛿𝑟) calculated 
earlier can be used for both instances. Thus, the uncertainty is given by 
 

𝑢(𝛿𝑐) =  √𝑢(𝑥̅𝑐𝑎𝑙)2 + 𝑢(𝑥̅𝑟𝑒𝑓)
2

+ 𝑢(𝛿𝑐𝑟𝑒𝑓)
2

+ 2𝑢(𝛿𝑟)2 ≈ 0.12. 

 
It should be noted, that while the uncertainties for the means were divided by the square root of 
the observations, similar treatment is not applied to the other terms. This is because the formula 
for the uncertainty of the mean assumes independent identically distributed errors which cannot 
be guaranteed for the correction terms. Furthermore, there could be and probably are other 
sources of error that are not accounted for in these calculations. Therefore, in order to err on the 
side of caution, the uncertainties are added as is, possibly slightly inflating the total uncertainty. 
 
Now all the components for calculating the complete measurement uncertainty is available and 
it is given by 
 

𝑢(𝑡) = √𝑢(𝑚)2 + 𝑢(𝛿𝑟)2 + 𝑢(𝛿𝑐)2 ≈ 0.31. 
 

Finally, the expanded measurement uncertainty is obtained from the previous by multiplying the 
complete measurement uncertainty with a coverage factor. At the NBI Forensic Laboratory, 
coverage factor of 2 is used to obtain approximately 95% uncertainty intervals. This gives 
2𝑢(𝑡) ≈ 0.63 as the expanded uncertainty. Thus, the final measurement, according to the 
measurement model specified earlier, should be 
 

𝑡 = 𝑚 − 0.175, ±0.63. 
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8.2 Quantification of MDMA in powders, mixtures and tablets by high performance 
liquid chromatography (HPLC-DAD) 

 

 
The MU estimation used in this example is an integrative approach (see Chapter 6) and is based 
on the Nordtest approach [9]. 
 
Uncertainty components that are considered: 
 

• Precision component (within-laboratory reproducibility) 

• Bias component (lab bias)  

 
 

8.2.1 Step 1. Specify measurand 
 
Quantification of MDMA in powders, mixtures and tablets by HPLC. 
 
 

8.2.2 Step 2. Quantify precision component (RW) 
 
Control limits are set to +/- 6.3% (rel.). 
 
They represent the intermediate precision on the 99% confidence level and result from 68 
measurements of a control sample (see supplement data, table 8.2-1). 
 

2,1% rel. RSD*3=6,3%rel 
 
 

8.2.3 Step 3. Quantify bias component 
 
a) The bias results (% rel.) from m=7 interlaboratory comparisons (21-24 participants) are: 
 
   -6.3, +4.5, -1.7, +3.9, -0.4, -2.9 and +1.8 (see supplement data, table 8.2-2). 
 
They are calculated by 
 

𝑏𝑖𝑎𝑠𝑖 =
𝑉𝑖−𝑉𝑅𝑖

𝑉𝑅𝑖

∙ 100 (% rel.) 

 
where 𝑉𝑅𝑖

 is the assigned (nominal) value and 𝑉𝑖 is the laboratory result in the i-th interlaboratory 

comparison. 
 
The root mean square of the bias is: 
 

𝑅𝑀𝑆𝑏𝑖𝑎𝑠 = √
∑ 𝑏𝑖𝑎𝑠𝑖

2

𝑚
   = √

89,9

7
=3.6 (% rel.) 

 
b) The uncertainty of the nominal value is calculated by 
 

𝑢(𝐶𝑟𝑒𝑓) =  
𝑆𝑅

√𝑛
 

where SR is the mean of the between laboratory RSD and n the mean number of participants. 
With SR = 5.8% and n = 22 (values taken from the 7 interlaboratory comparisons) the uncertainty 
of the nominal value is 
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𝑢(𝐶𝑟𝑒𝑓) =  
5.8

√22
   = 1.2 (% rel.) 

 
 

8.2.4 Step 4. Convert components to standard uncertainty u(x) 
 
Confidence intervals and similar distributions can be converted to standard uncertainty. 
 
Lab precision: 
 

u(Rw) = 6.3/3 = 2.1 (% rel.) 

 
Since determinations are done in duplicate standard uncertainty reduces to 
 

u(Rw) = 
2.1

√2
 = 1.5 (% rel.) 

 

u(bias) =  √𝑅𝑀𝑆𝑏𝑖𝑎𝑠
2 + (𝑢(𝐶𝑟𝑒𝑓))2 

 

= √3.62 + 1.22 = 3.8 (% rel.) 
 
 

8.2.5 Step 5. Calculate combined measurement uncertainty uC 
 
Standard uncertainties can be summed by taking the square root of the sum of the squares. 
 

𝑢𝐶 = √(𝑢(𝑅𝑊))2 + (𝑢(𝑏𝑖𝑎𝑠))2   = √1.52 + 3.82 = 4.1 (% rel.) 

 
 

8.2.6 Step 6. Calculate expanded uncertainty 
 

U = k * uC 

 
k = 2 (95% confidence level) 

 
uC = 4.1% (rel.) 

 
U = 2 *4.1 = 8.2 (% rel.) (95% confidence level) 
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Supplement data: 
 

 

No. result No. result No. result No. result 

1 65,2 21 63,8 41 66,2 61 68,6 

2 65,7 22 63,9 42 66,9 62 66,5 

3 65,6 23 63,1 43 67,5 63 66,1 

4 67,1 24 64,1 44 67,4 64 65,6 

5 65,8 25 63,9 55 69,2 65 68,8 

6 66,5 26 63,7 46 66,8 66 66,4 

7 65,3 27 63,3 47 65,8 67 65,4 

8 65,3 28 63,6 48 66,7 68 65,7 

9 64,8 29 64,1 49 65,7   

10 65,1 30 64 50 65,7   

11 66,4 31 65,6 51 67   

12 65 32 64,9 52 68,4   

13 65,3 33 67,6 53 66,1   

14 64,8 34 67,4 54 64,3   

15 64,6 35 65,2 55 67,2   

16 64,8 36 65 56 66,2   

17 64 37 64,9 57 64,7   

18 64,9 38 67,1 58 68,2   

19 64,2 39 65,4 59 67,2   

20 65,4 40 65,2 60 66,3   

Mean all (m) 65,7 

Std dev all 
(s) 

1,4 

Rel. std dev RSD= (s/m)*100 
=1,4/65,7*100= 2,1 

Table 8.2-1: Data from mean value control charts. 
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Proficiency test: Quantification of MDMA in tablets and powders   

Year participants (n) 
Assigned value 
(% base by weight) 
without outliers 

RSD (%) 
Lab result 

(%) 
Bias 

(% rel.) 
Bias`2 

1 24 14,2 7,5 13,3 -6,3380 40,2 

2 21 17,9 4,8 18,7 4,4693 20,0 

3 23 29,3 2,6 28,8 -1,7065 2,9 

4 23 23,3 7,9 24,2 3,8627 14,9 

5 23 26,1 5,1 26,0 -0,3831 0,1 

6 22 13,7 9,5 13,3 -2,9197 8,5 

7 21 33,5 3,3 34,1 1,7910 3,2 

Mean 22,4  5,8    

Sum Bias`2      89,9 

RMS bias 3,6      

Table 8.2-2: Data from proficiency tests. 



  
APPROVED BY ENFSI BOARD ON 15.02.2024 

 

 

 

Page 29 of 100           GDL QCC-GDL-001       001  15.04.2024 

    

8.3 Quantitative determination of cocaine in seizures by HPLC DAD method 
 
[2, 7, 9, 10-16] 

 
 

8.3.1 General information 
 
Method:  Quantitative determination of cocaine in seizures by HPLC DAD method 
Measurand:  Cocaine seizures concentration 
Units:   % (g/100g) 
 
 

8.3.2 Brief method description 
 
HPLC-DAD is a major separation technique commonly used in forensic drug analysis. For ease 
of sample preparation, best reproducibility, and detectability, reversed phase chromatography 
is recommended for the analysis of cocaine. Dissolve an appropriate amount of standard or 
sample in ACN: aqueous buffer (80:20, v/v), targeting a concentration of the cocaine between 
0.01-0.40 mg/ml (standard solutions) and use of peak area for HPLC-DAD quantitation. For 
linear regression, the ordinary least squares model is appropriate. 
 
Seized samples were accurately weighted and directly diluted as above and then filtered through 
PVDF syringe filter before injection into the HPLC-DAD system. 
 
 

8.3.3 Strategy of uncertainty calculation 
 
The strategy for uncertainty calculation presented here is a top-down approach which uses 
information obtained from method validation with certified reference materials (CRM). 
 
The top-down approach is an empirical approach which includes both imprecision and bias 
components of uncertainty. Uncertainties arising from random (within-laboratory precision) and 
systematic (bias) effects are treated alike. 
 
Repeatability and intermediate reproducibility are terms included in within-laboratory precision. 
To assess repeatability, six CRM independent aliquots were analysed in the same day under 
the same conditions. 
 
The estimation of the precision under intermediate conditions includes all causes of variation 
expected in the routine application of the analytical method: different days, different technicians, 
different glassware, different chemicals, different calibration curves. Validation experiments 
under intermediate conditions were performed in four non-consecutive days, performing six 
replicates each day. Bias is the difference between certified value and the average of the results 
obtained under intermediate conditions. 
 
 

8.3.4 Uncertainty calculation 
 
The steps needed for uncertainty calculation are: 
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8.3.4.1 Step 1.- Data collection 
 
It is necessary to gather the following information regarding validation experiments: 
 

• Certified reference materials: Certified value, uncertainty, and coverage factor (k) 

• Number of replicates analysed in repeatability conditions (n) 

• Number of replicates analysed in reproducibility conditions (intermediate precision) (N) 

• Average of results in reproducibility conditions (𝑋̅) 

• Standard deviation of repeatability (Sr) 

• Standard deviation of reproducibility (SR) 

• Bias (B) 

 
In the example presented here, analytical method’s data are: 
 

Certified value (% w/w) 70,3 

Uncertainty of certified value (% w/w) 0,60 

Coverage factor (K) 2 

Replicates in repeatability conditions (n) 6 

Replicates in reproducibility conditions(N) 24 

Average of results in reproducibility conditions (𝑋̅) 69,20 

Standard deviation of repeatability (Sr) (% w/w) 0,83 

Standard deviation of reproducibility (SR) (% w/w) 1,58 

Bias (B) (% w/w) 1,09 

 

Table 8.3-1: Data from the analytical method. 

 
 

8.3.4.2 Step 2- Uncertainty estimation 
 
The combined standard uncertainty (uc) is defined as an estimated standard deviation equal 
to the positive square root of the total variance obtained by combining all the uncertainty 
components. These components are the uncertainty associated to bias and the uncertainty 
related to method precision. 
 

𝑢𝑐 = √𝑢𝑏𝑖𝑎𝑠
2 + 𝑢𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

2  

 
 
Bias uncertainty: It has been considered that bias uncertainty has two components: uncertainty 
of the reference value and uncertainty of the correction term 
 

𝑢𝑏𝑖𝑎𝑠 = √𝑢𝑅𝑉
2 + 𝑢𝑐𝑜𝑟𝑟

2  
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• Uncertainty of reference value (uRV): 

 
Each CRM was provided with their corresponding certificate. The certificate reports the 
uncertainty associated to CRM certified value and the coverage factor (K=2 for 95% 
confidence). Equation applied is: 
 

𝑢𝑅𝑉 =
𝑈𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑒

𝐾
 

 
In the example: 
 

𝑢𝑅𝑉 =
0,6

2
= 0,3 

 

• Uncertainty correction term: 

 

The uncertainty of this term is calculated considering that method bias reflects how far 

away method results are from the certified values. A rectangular distribution is assumed, 

and the following formula applied: 

 

𝑢𝑐𝑜𝑟𝑟 =
𝐵𝑖𝑎𝑠

√3
 

 
In the example: 
 

𝑢𝑐𝑜𝑟𝑟 =
1,09

√3
= 0,63 

 
Therefore, bias uncertainty is in the example: 
 

𝑢𝑏𝑖𝑎𝑠 = √𝑢𝑅𝑉
2 + 𝑢𝑐𝑜𝑟𝑟

2 = √0,32 + 0,632 = 0,70 

 
 
Precision uncertainty: The uncertainty related to method precision, has two components: 
repeatability and reproducibility uncertainties: 
 

𝑢𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = √𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2 + 𝑢𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦

2  

 

• Repeatability precision: 

 

The uncertainty is calculated using the repeatability standard deviation and the number 

of analyses performed in repeatability experiments using the formula: 

 

𝑢𝑟 =
𝑆𝑟

√𝑛
 

 
In the example: 
 

𝑢𝑟 =
0,83

√6
= 0,34 
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• Reproducibility precision: 

 

Uncertainty associated to reproducibility is a type A component and is calculated dividing 

the standard deviation for reproducibility by the square root of the total number of 

experiments performed in during validation: 

 

𝑢𝑅 =
𝑆𝑅

√𝑁
 

 
In the example: 
 

𝑢𝑅 =
1,58

√24
= 0,32 

 
Therefore, precision uncertainty is in the example: 
 

𝑢𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = √𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2 + 𝑢𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦

2 = √0,342 + 0.322 = 0,47 

 
 
Combined standard uncertainty: As previously stated, uncertainty contributions are summed 
up to a combined standard uncertainty: 
 

𝑢𝑐 = √𝑢𝑏𝑖𝑎𝑠
2 + 𝑢𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

2 = √0,702 + 0,472 = 0,84 

 
 

8.3.4.3 Step 4.- Expanded uncertainty estimation 
 
Once combined uncertainty (uc) is obtained, expanded uncertainty (U) is calculated as follows: 
 

𝑈 = 𝑢𝑐  𝑥 𝐾 
 
K is the coverage factor. In this case, to obtain the 95% of the confidence, K=2 is used. 
 
In the example: 
 

𝑈 = 𝑢𝑐  𝑥 𝐾 = 0,84 𝑥2 = 1,7 %w/w 
 
Uncertainty is expressed in absolute form, if a relative form is needed it can be calculated as: 
 

𝑈(%) =
𝑈

𝑋̅
𝑥 100 =

1,7

69,2
 𝑥 100 = 2,5% 

 
The contribution of uncertainty due to bias only has to be introduced if CI≥2. The following 
equation is used to determine ubias: 
 

𝑢𝑏𝑖𝑎𝑠 =
𝐵𝑖𝑎𝑠

√3
=

𝑉𝑐 − 𝑉𝑀

√3
 

 
Effective degrees of freedom are calculated using Welch-Satterthwaite equation: 
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𝜐𝑒𝑓𝑓 =
𝑢𝑐

4

∑
𝑢(𝑥𝑖)4

𝜐𝑖

𝑛
𝑖=1

 

 
Where u(xi) is each individual standard uncertainty and νi is the degree of freedom of each 
standard uncertainty. 
 
Expanded Uncertainty (U) is obtained by multiplying the combined standard uncertainty (uc) 
by an appropriate coverage factor (k). The coverage factor is obtained from t distribution 
table with a level of confidence of 95%. 
 
𝑈 = 𝑢𝐶𝑥 𝑘 = 𝑢𝑐  𝑥 𝑡𝛼

⁄ט2
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8.4 Determination of ethanol in blood using headspace gas chromatography with 
flame ionization detector (HS-GC-FID ) 

 
[2, 7, 9, 10-14, 17, 18] 
 
 

8.4.1 General information 
 

Method: Determination of ethyl alcohol in blood samples by gas chromatography with 
FID detector using headspace technique 

Measurand: Blood alcohol concentration (BAC) 
Units:  g/L 
 
 

8.4.2 Brief method description 
 
This procedure outlines a simple method for the detection and quantitation of ethanol in blood 
samples by “Headspace” gas chromatographic procedure.  Static headspace offers a reliable, 
simple, and accurate way to quantitate volatile compounds in a variety of liquid matrices.  
Practically, the sample and an internal standard are added to a vial and the vial is sealed.  The 
sealed bottle is then placed into a heated sample carousel of the Headspace Analyzer. As 
temperature increases volatile compounds are released from the solution into the “headspace” 
above the liquid.  The headspace is then sampled and analysed for the presence of the targeted 
analytes via gas chromatography. 
 
 

8.4.3 Strategy of uncertainty calculation 
 
The strategy for uncertainty calculation presented here is a top-down approach which uses 
information obtained from long-term participation in proficiency testing (PT) for method validation 
and uncertainty estimation. To apply this strategy is mandatory that: 
 

• The test items in PT should be reasonably representative of the routine test items. For 

example, the type of material and range of values of the measurand should be 

appropriate 

• The number of PT rounds is appropriate: a minimum of 6 different trials over an 

appropriate period is recommended to get a reliable estimate  

• The assigned values, defined as the values attributed to a particular property of the 

proficiency test items, have an appropriate uncertainty. When the assigned value is 

calculated as a consensus value, the number of laboratories participating should be 

sufficient for reliable characterisation of the material 

• Participation of the laboratory in the PT round was satisfactory (z-score≤2) 

 

8.4.4 Uncertainty calculation 
 
The steps needed for uncertainty calculation are: 
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8.4.4.1 Step 1.- Data collection 
 
It is necessary to gather the following information: 
 

• Number of PT items included in calculation (p) 

• Assigned value of each PT item, which is used as a reference value (Yi)  

• Assigned value’s uncertainty (uAV) or assigned value’s standard deviation (Syi) 

• Number of participants laboratories (Ni): number of laboratories whose results were used 

to obtain assigned value (consensus value) 

• Result obtained by the laboratory (Xi) 

 
If sufficient data are available, different ranges of the property studied can be established. 
The minimum number of data needed to obtain statistically significant results is ten. 
In the example presented here, the data collected (BAC= 0,5-1,0 g/L) through a period of 
10 years, are: 
 

Proficiency 
test item (i) 

Ni Yi S Yi  Xi 

1 48 0,63 0,06 0,68 

2 58 0,95 0,05 0,98 

3 47 0,76 0,05 0,78 

4 54 0,58 0,02 0,58 

5 44 0,55 0,06 0,52 

6 43 0,56 0,05 0,57 

7 55 0,54 0,03 0,57 

8 46 0,57 0,05 0,58 

9 56 0,56 0,03 0,56 

10 46 0,75 0,06 0,75 

11 55 0,72 0,04 0,68 

12 47 0,86 0,07 0,87 

13 49 0,8 0,09 0,77 

14 51 0,5 0,04 0,49 

15 49 0,65 0,07 0,63 

16 53 0,8 0,05 0,79 

17 47 0,72 0,05 0,75 

18 41 0,58 0,05 0,59 

19 44 0,68 0,05 0,68 

20 46 0,91 0,09 0,91 

21 51 0,51 0,04 0,50 

22 62 0,64 0,07 0,64 

23 55 0,78 0,06 0,79 

Table 8.4-1: Data from Proficiency tests 
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8.4.4.2 Step 2.- Bias and reproducibility calculation: 
 
Once all the data are collected, the absolute and relative differences between the result 
obtained by the laboratory (Xi) and the assigned value (Yi) are calculated. The mean value 

of the results (𝑋̅), the sum of the absolute Di (∑|𝐷𝑖|), the sum of squares of the Di ( ∑ 𝐷𝑖
2) and 

the standard deviation of di (Sd) are then calculated. 
 

Assigned value 
(Reference value) 

Laboratory result Differences (di) Relative differences (Di) 

Y1 X1 d1=Y1-X1 D1= 100 x d1/ Y1 

Y2 X2 d2=Y2-X2 D2= 100 x d2/ Y2 

… … .. … 

Yn Xn dn= Yn-Xn Dn= 100 x dn/ Yn 

Table 8.4-2: Methodology used in the determination of bias and reproducibility 

 
Therefore, in our example: 
 
 

Proficiency test 
item (i) 

Yi Xi di Di (%) 

1 0,63 0,68 -0,05 -7,94 

2 0,95 0,98 -0,03 -3,16 

3 0,76 0,78 -0,02 -2,63 

4 0,58 0,58 0 0 

5 0,55 0,52 0,03 5,45 

6 0,56 0,57 -0,01 -1,79 

7 0,54 0,57 -0,03 -5,56 

8 0,57 0,58 -0,01 -1,75 

9 0,56 0,56 0 0 

10 0,75 0,75 0 0 

11 0,72 0,68 0,04 5,56 

12 0,86 0,87 -0,01 -1,16 

13 0,80 0,77 0,03 3,75 

14 0,5 0,49 0,01 2,00 

15 0,65 0,63 0,02 3,08 

16 0,80 0,79 0,01 1,25 

17 0,72 0,75 -0,03 -4,17 

18 0,58 0,59 -0,01 -1,72 

19 0,68 0,68 0 0 

20 0,91 0,91 0 0 

21 0,51 0,50 0,01 1,96 

22 0,64 0,64 0 0 

23 0,78 0,79 -0,01 -1,28 

 

𝑿̅ ∑(|𝑫𝒊|) ∑(𝑫𝒊 − 𝑫̅)𝟐 Sd 
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0,68 54,2 106,2 0,021 

Table 8.4-3: Data used in the determination of bias and reproducibility 

 
As stated before, when a laboratory participates satisfactorily in PT exercises for a long 
time, it is possible to use those results to perform method validation and obtain validation 
parameters such as bias and reproducibility. 
 
Bias: Calculated as a quotient between the sum of absolute relative differences (|𝐷𝑖|) and the 
number of PT rounds included (p). 
 

𝐵(%) =
∑|𝐷𝑖|

𝑝
  

In our example: 
 

𝐵(%) =
54,2

23
= 2,4%  

 
Reproducibility: Calculated as the standard deviation of relative differences (SD): 
 

𝑆𝐷(%) = √
∑ (𝑫𝒊 − 𝑫̅)𝟐𝑛𝑑

𝑖=1

𝑝 − 1
  

 
In our example: 
 

𝑆𝐷(%) = √
106,2

23 − 1
= 2,2% 

 
 

8.4.4.3 Step 3.- Uncertainty estimation 
 
The combined standard uncertainty (uc) is defined as an estimated standard deviation equal to 
the positive square root of the total variance obtained by combining all the uncertainty 
components. These components are the uncertainty associated to bias and the uncertainty 
related to method precision. 
 

𝑢𝑐 = √𝑢𝑏𝑖𝑎𝑠
2 + 𝑢𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

2  

 
Bias uncertainty: Using the laboratory’s experience in PT, the uncertainty associated to bias can 
be estimated combining three components: 
 

• Uncertainty related to assigned values of each PT item (Yi) This uncertainty is the 

uncertainty of the reference value (uRV).  

• Uncertainty associated with the mean of the results obtained by the laboratory for the PT 

samples (uMV).  

• Uncertainty associated with the difference (di) between laboratory’s result and assigned 

value. This is the uncertainty associated to a correction term (uD). 

 
The formula applied is: 
 



  
APPROVED BY ENFSI BOARD ON 15.02.2024 

 

 

 

Page 38 of 100           GDL QCC-GDL-001       001  15.04.2024 

    

𝑢𝑏𝑖𝑎𝑠 = √𝑢𝑅𝑉
2 + 𝑢𝑀𝑉

2 + 𝑢𝐷
2  

 

• Uncertainty of the reference value: 

 
In some cases, PT provider may report the uncertainty associated to the assigned 
value for each PT item as an expanded uncertainty, indicating the coverage factor 
used. In these cases, the standard uncertainty of each assigned value (uAVi) is 
simply calculated by dividing expanded uncertainty by coverage factor. 
 
Once the standard uncertainty of each PT item is obtained, the uncertainty of the 
reference value is calculated as the quotient between the quadratic sum of the 
uncertainty of each PT item and the number of PT samples (p), as follows: 
 

𝑢𝑅𝑉,𝑖 = √
∑ 𝑢𝐴𝑉,𝑖

2

𝑝
 

 
However, it is possible that PT provider does not report uncertainties but reports the 
standard deviation of the assigned value for each PT item. In these cases, the 
standard uncertainty for each PT item is calculated dividing the standard deviation 
reported by the square root of the number of participating laboratories (Ni).  
 

𝑢𝐴𝑉,𝑖 =
𝑆𝑌,𝑖

√𝑁𝑖
 

 
The standard deviation of the reference value is calculated as has been explained 
before. 
 
In our example, PT provider reported the standard deviation of the assigned value 
for each PT item. Therefore, the standard uncertainty for each PT item is calculated 
as follows: 
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Proficiency test 
item (i) 

N SYi uVA 

1 48 0,06 0,009 

2 58 0,05 0,007 

3 47 0,05 0,007 

4 54 0,02 0,003 

5 44 0,06 0,009 

6 43 0,05 0,008 

7 55 0,03 0,004 

8 46 0,05 0,007 

9 56 0,03 0,004 

10 46 0,06 0,009 

11 55 0,04 0,005 

12 47 0,07 0,010 

13 49 0,09 0,013 

14 51 0,04 0,006 

15 49 0,07 0,010 

16 53 0,05 0,007 

17 47 0,05 0,007 

18 41 0,05 0,008 

19 44 0,05 0,008 

20 46 0,09 0,013 

21 51 0,04 0,006 

22 62 0,07 0,009 

23 55 0,06 0,008 

Table 8.4-4: Data used in the determination of the uncertainty of the reference value. 

 
The uncertainty of reference value obtained is: 
 

𝑢𝑅𝑉 = √
∑ 𝑢𝐴𝑉

2

𝑝
 = √

0,015

23
 = 0,008 

 
 

• Uncertainty of the mean value 

 
The uncertainty of the mean value is calculated using the standard deviation of the 
differences (Sd) and the number of PT items analysed (p): 
 

𝑢𝑀𝑉 =
𝑆𝑑

√𝑝
 

 
In our example: 
 

𝑢𝑀𝑉 =
𝑆𝑑

√𝑝
=

0,021

√23
= 0,045 

 

• Uncertainty of the correction term: 
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The differences (di) between a laboratory’s results and the assigned values reflects 
how far away the laboratory results are from the “true values”. Therefore, they can 
be used to calculate the uncertainty due to the correction term. 
 
The differences are estimates made in the form of maximum range(±d), being the 
shape of its distribution unknown. Therefore, a rectangular distribution is assumed, 
and the following formula is applied: 
 

𝑢𝑑 =
𝑑

√3
 

 
Method bias has been previously calculated as a relative form (B%), therefore, the 
uncertainty associated with the differences can be expressed as: 
 

𝑢𝑑 =
𝐵(%) ×  𝑋̅

100 𝑥√3
 

 

Being X̅  the mean value of our results (Xi). 
 
In our example: 
 

B (%) 𝑿̅ uD 

2,4 0,68 0,0094 

 
Therefore, in our example, the uncertainty associated to the bias is:  
 

𝑢𝑏𝑖𝑎𝑠 = √𝑢𝑅𝑉
2 + 𝑢𝑀𝑉

2 + 𝑢𝑑
2 = √0,0082 + 0,0452 + 0,0092 = 0,013 

 
 
 

Precision uncertainty (reproducibility within laboratory): As previously stated, in the present 
strategy, reproducibility within laboratory has been calculated from PT results. Uncertainty 
associated to the reproducibility (uRW) is calculated using the formula: 
 

𝑢𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑢𝑅𝑊 =
𝑆𝐷(%) 𝑥 𝑋̅

100 𝑥 √𝑛
 

 

Where 𝑆𝐷(%) is the method reproducibility, 𝑋̅ is the mean value of the laboratory’s result and n 
is the number of analyses performed in each PT sample. 
 
In our example, as each sample was analysed in duplicate, n is 2. 
 

𝑆𝐷 (%) 𝑿̅ uRW 

2,2 0,68 0,011 

 

Therefore, the combined standard uncertainty is: 
 

𝑢𝑐 = √𝑢𝑏𝑖𝑎𝑠
2 + 𝑢𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

2  = √0,0132 + 0,0112 = 0,02  
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8.4.4.4 Step 4.- Expanded uncertainty estimation 
 
Once combined uncertainty (uc) is obtained, expanded uncertainty (U) is calculated as follows: 
 

𝑈 = 𝑢𝑐  𝑥 𝐾 
 
Where K is the coverage factor. In this case, to obtain the 95% of the confidence, K=2 is used. 
 
Therefore, 
 

𝑈𝑐 = 𝑢𝑐  𝑥 𝐾 = 0,02 𝑥 2 = 0,04 g/L 
 
Uncertainty is expressed in absolute form, if a relative form is needed it can be calculated as: 
 

𝑈𝑐(%) =
𝑈

𝑋̅
𝑥 100 =

0,04

0,68
 𝑥 100 = 5,4% 
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8.5 Quantifying Delta-9-Tetrahydrocannabinol (THC) in Blood example and 
MUCalc 

 
 

8.5.1 Introduction 
 
A bottom-up approach was used to estimate the measurement uncertainty of Delta-9-
Tetrahydrocannabinol (THC) in Blood (see Chapter 6). The methodology described here 
underpins the development of a Measurement Uncertainty Calculator MUCalc 

(https://uod.ac.uk/lrcfsmucalc) by the Leverhulme Research Centre for Forensic Science 

(LRCFS). MUCalc is an open access white-box software calculator developed using the Shiny 
package in R. It is user friendly and displays in detail, all the methods and formulas used in the 
calculation for easy understanding and verification of results. 
 
By white-box, it provides a more detailed methodical analysis with a transparent step-by-step 
calculation of how each uncertainty component is estimated in a more user-friendly easy to 
follow approach. These formulas and calculations are displayed on screen and in a summary 
report, generated by software, making it easy for users to understand and cross examine every 
result generated by MUCalc. It also provides reference links to published articles to assist users 
make informed parameter choices. 
 
The current version of the software is suitable for toxicological samples (e.g. blood, urine) and 
seized drug samples (e.g. drug tablets, leaves, powder). Uncertainty components are calculated 
in accordance with the standards of International Organization for Standardization ISO/IEC 
17025 [1] for 
 

1. Homogeneity 
2. Calibration Curve 
3. Method Precision 
4. Calibration Standard 
5. Sample Preparation 

 
Each of these uncertainty sources/components is explained in detail in annex II. In addition to 
calculating Uncertainty of Homogeneity, a Homogeneity Test is carried out to test whether there 
is a statistically significant difference between group means of samples using a one-way analysis 
of variance (ANOVA). 
 
MUCalc offers the choice to fit a linear regression or a quadratic regression to a calibration curve 
data with the option to specify weights if weighted least square regression is desired. 
 
Each uncertainty component is calculated separately and then combined to derive the 
Combined Uncertainty. If data is uploaded for all components, the Combined Uncertainty is 
calculated using all components. An uncertainty component can be excluded from the Combined 
Uncertainty by simply not uploading any data for that component. The Combined Uncertainty is 
multiplied by a Coverage Factor to derive an Expanded Uncertainty. 
 
MUCalc has the option to calculate a Coverage Factor when a confidence level is specified or 
allows one to specify a Coverage Factor directly. Where a confidence level is specified, MUCalc 
calculates an Effective Degrees of Freedom using the Welch-Satterthwaite equation. The 
derived Effective Degrees of Freedom along with the specified confidence level is used to read 
a value termed Coverage Factor, from a T-Distribution table. 
 
MUCalc summarises all results in a single tab and can also generate a pdf report giving in detail, 
data supplied and calculations performed by the software. The development of MUCalc is 
ongoing, detailed information on the current version is available at 

https://uod.ac.uk/lrcfsmucalc
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https://doi.org/10.5281/zenodo.3944694 and a live version available at 
https://uod.ac.uk/lrcfsmucalc. See specifications of MUcalc (Annex II). The calculations 
described in this THC example below can be done using MUCalc, and are published in Klu et 
al.(2021) [19]. 
 
 

8.5.2 Strategy of uncertainty calculation 
 
 

8.5.2.1 Step 1 - Specifying the Measurand 
 
The measurand is the concentration of the THC analyte (µg/L) in a blood sample expressed 
using the relationship: 
 

𝑥THC =
𝑥𝑐𝑠

𝑉
×   𝑓precision  (µg/L) (1) 

 
where 𝑥_𝑐𝑠 is the amount of THC in the case sample, 𝑉 is the volume of the case sample and 
fprecision is the correction factor for method precision. 
 
 

8.5.2.2 Step 2 - Identify the Sources of Uncertainty 
 
With reference to Equation (1), the sources of uncertainties associated with quantifying THC in 
blood are identified using the cause and effect diagram displayed in Figure 8.5-1. The main 
uncertainty sources are from method precision, sample volume, calibration curve and the 
preparation of calibration standards. 
 
In the next sections, each of these uncertainty sources are quantified in detail and combined to 
obtain an overall measure of uncertainty. 
 

file://///bk/../../../../../shares/bk020385/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/W3DF40NO/1
file://///bk/../../../../../shares/bk020385/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/W3DF40NO/2


  
APPROVED BY ENFSI BOARD ON 15.02.2024 

 

 

 

Page 44 of 100           GDL QCC-GDL-001       001  15.04.2024 

    

 

Figure 8.5-1: Cause and effect diagram for identifying the sources of uncertainty in quantifying THC in blood. A 25 µL 
pipette is denoted with pip-25 and a 10 mL volumetric flask is denoted with flask-10. 

 
 

8.5.2.3 Step 3 - Quantifying Uncertainty Sources 
 
For simplicity, the uncertainty associated with the preparation of calibration standards was 
calculated separately from that of the calibration curve. 
 
Uncertainty of the Calibration Standards 
The uncertainty associated with the calibration standards combines the uncertainties stated on 
the Certificates of Analysis of the Certified Reference Materials (CRMs) and the inaccuracies of 
all measuring equipment (e.g. pipettes and volumetric flasks) used to dilute the CRMs and spike 
blank blood samples when preparing a calibration curve. The structure of how the THC CRM 
was diluted to make other solutions in preparing the calibration curve is displayed in Figure 8.5-
2. 

file://///bk/../../../../../shares/bk020385/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/W3DF40NO/3
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Figure 8.5-2: The structure of THC dilution process for the preparation of the calibration curve. 

 
The volume, tolerance, and coverage factor (k) of pipettes and volumetric flasks used as given 
in the manufacturer’s reference material, are given in Table 8.5-1, along with the number of 
times each pipette and volumetric flask was used in the preparation process for each standard 
solution. 
 
The standard uncertainty (u) of THC as well as that of pipettes and volumetric flasks is given by  
𝑢 = Tolerance/𝑘, and the relative standard uncertainty (RSU) is given by  𝑢 = 𝑢/Volume. These 
are summarised in Table 8.5-2, together with the uncertainty associated with the preparation of 
calibration standards. 
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THC CRM 

 
Purity 

(mg/mL) 

Tolerance 

(mg/mL) 

Coverage 

factor(k)  

THC 1 0.033 2 

Solutions 

 Pipette/ Volume Tolerance Coverage Times 

 Flask µL µL factor(k) used 

Stock Solution ACAL      

 pip-25 25 0.30 2 1 

 pip-1000 1000 5 2 2 

Working Solution BCAL      

 pip-50 50 0.30 2 1 

 pip-1000 1000 5 2 7 

Working Solution CCAL      

 pip-100 100 0.3 2 1 

 flask-10 10000 25 √33 1 

Calibration Standards 

1-3 µg/L (Cal1−3) 
 

pip-25 
 

25 
 

0.30 

 
2 

 
9 

 pip-50 50 0.30 2 1 

 pip-1000 1000 5 2 5 

4-10 µg/L (Cal4−10) 
 

pip-25 
 

25 
 

0.30 
 

2 
 

7 

 pip-50 50 0.30 2 3 

 pip-1000 1000 5 2 5 

Table 8.5-1: Data on THC CRM purity, pipette and flask used for solutions preparation. 
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RSU of THC CRM, volumetric flasks and pipettes 

𝒖(𝐏𝐮𝐫𝐢𝐭𝐲) =
𝟎.𝟎𝟑𝟑

𝟐
 =  𝟎. 𝟎𝟏𝟔𝟓, 𝒖𝒓(𝐏𝐮𝐫𝐢𝐭𝐲) =

𝟎. 𝟎𝟏𝟔𝟓

𝟏
 =  𝟎. 𝟎𝟏𝟔𝟓 

𝒖(pip-25)=
𝟎.𝟑𝟎

𝟐
 =  𝟎. 𝟏𝟓, 𝒖𝒓(𝐩𝐢𝐩 − 𝟐𝟓) =

𝟎. 𝟏𝟓

𝟐𝟓
 =  𝟎. 𝟎𝟎𝟔 

𝒖(pip-50)=
𝟎.𝟑𝟎

𝟐
 =  𝟎. 𝟏𝟓, 𝒖𝒓(pip-50)  =

𝟎.𝟏𝟓

𝟓𝟎
 =  𝟎. 𝟎𝟎𝟑 

(pip-100)=
𝟎.𝟑

𝟐
 =   𝟎. 𝟏𝟓, 𝒖𝒓(pip-100)=

𝟎.𝟏𝟓

𝟏𝟎𝟎
 =  𝟎. 𝟎𝟎𝟏𝟓 

𝒖(pip-1000)  =
𝟓

𝟐
 =  𝟐. 𝟓, 𝒖𝒓(pip-1000)  =   𝟐. 𝟓/𝟏𝟎𝟎𝟎  =  𝟎. 𝟎𝟎𝟐𝟓 

𝒖(flask-10)  =
𝟐𝟓

√𝟑
 =  𝟏𝟒. 𝟒𝟑𝟑𝟕𝟔, 𝒖𝒓(flask-10)=

𝟏𝟒.𝟒𝟑𝟑𝟕𝟔

𝟏𝟎𝟎𝟎𝟎
 =  𝟎. 𝟎𝟎𝟏𝟒𝟒 

RSU of working standard solution 

𝒖𝒓(𝐀𝐂𝐀𝐋) = √𝒖𝒓(𝐏𝐮𝐫𝐢𝐭𝐲)𝟐 + 𝒖𝒓(𝐩𝐢𝐩 − 𝟐𝟓)𝟐 
+  𝟐 ×  𝒖𝒓(𝐩𝐢𝐩 − 𝟏𝟎𝟎𝟎)𝟐  

= √𝟎. 𝟎𝟏𝟔𝟓𝟐 
+  𝟎. 𝟎𝟎𝟔𝟐 

+  𝟐 ×  𝟎. 𝟎𝟎𝟐𝟓𝟐  

=  𝟎. 𝟎𝟏𝟕𝟗𝟏 

 

 𝒖𝒓(𝐁𝐂𝐀𝐋) =   √𝒖𝒓(𝐀𝐂𝐀𝐋)𝟐 
+ 𝒖𝒓(𝒑𝒊𝒑 − 𝟓𝟎)𝟐 

+  𝟕  𝒖𝒓(𝐩𝐢𝐩 − 𝟏𝟎𝟎𝟎)𝟐 

= √𝟎. 𝟎𝟏𝟕𝟗𝟏𝟐 
+  𝟎. 𝟎𝟎𝟑𝟐 

+  𝟕 ×  𝟎. 𝟎𝟎𝟐𝟓𝟐 

=  𝟎. 𝟎𝟏𝟗𝟑𝟐𝟕 
 

𝒖𝒓(𝐂𝐂𝐀𝐋) = √𝒖𝒓(𝐀𝐂𝐀𝐋)𝟐 
+ 𝒖𝒓(𝐩𝐢𝐩 − 𝟏𝟎𝟎)𝟐 

+ 𝒖𝒓(𝐟𝐥𝐚𝐬𝐤 − 𝟏𝟎)𝟐  

= √𝟎. 𝟎𝟏𝟕𝟗𝟏𝟐 
+  𝟎. 𝟎𝟎𝟏𝟓𝟐 

+  𝟎. 𝟎𝟎𝟏𝟒𝟒𝟐  

=  𝟎. 𝟎𝟏𝟖 

RSU of calibration standards 1-3 µg/L and 4-10 µg/L 

𝒖𝒓(𝐂𝐚𝐥𝟏−𝟑) = √𝒖𝒓(𝐁𝐂𝐀𝐋)𝟐 
+  𝟗 × 𝒖𝒓(𝐩𝐢𝐩 − 𝟐𝟓)𝟐 

+ 𝒖𝒓(𝐩𝐢𝐩 − 𝟓𝟎)𝟐 
+  𝟓 × 𝒖𝒓(𝐩𝐢𝐩 − 𝟏𝟎𝟎𝟎)𝟐 

= √𝟎. 𝟎𝟏𝟗𝟑𝟐𝟕𝟐 
+  𝟗 ×  𝟎. 𝟎𝟎𝟔𝟐 

+  𝟎. 𝟎𝟎𝟑𝟐 
+  𝟓 ×  𝟎. 𝟎𝟎𝟐𝟓𝟐 

= 0.02716 
 

𝒖𝒓 (𝐂𝐚𝐥𝟒−𝟏𝟎)

= √𝒖𝒓(𝐂𝐂𝐀𝐋)𝟐 
+  𝟕 × 𝒖𝒓(𝐩𝐢𝐩 − 𝟐𝟓)𝟐 

+  𝟑 × 𝒖𝒓(𝐩𝐢𝐩 − 𝟓𝟎)𝟐 
+  𝟓 × 𝒖𝒓(𝐩𝐢𝐩 − 𝟏𝟎𝟎𝟎)𝟐 

= √𝟎. 𝟎𝟏𝟖𝟐 
+  𝟕 ×  𝟎. 𝟎𝟎𝟔𝟐 

+  𝟑 ×  𝟎. 𝟎𝟎𝟑𝟐 
+  𝟓 ×  𝟎. 𝟎𝟎𝟐𝟓𝟐 

=  𝟎. 𝟎𝟐𝟓𝟐 

Table 8.5-2: Calculations of RSU for THC CRM, volumetric flasks, pipettes, stock and working solutions used for 
calibration standards 1-3 µg/L and 4- 10 µg/L.  
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The RSU associated with the preparation of calibration standards was obtained by combining 
the RSU of 𝑢𝑟(Cal1−3) and 𝑢𝑟 (Cal4−10) as: 
 

𝑢𝑟(CalStd) = √𝑢𝑟(Cal1−3)2 + 𝑢𝑟(Cal4−10)2 

                                                = √ 0.027162 + 0.02522  

                                                = 0.0371 

 

 
Uncertainty of the Calibration Curve 
 
The uncertainty associated with the fitted calibration curve is estimated using the error 
propagation formula: 
 
 

𝑢(CCur) =  
𝑆𝑦 𝑥⁄

𝑏1

√
1

𝑟𝑐𝑠

+
1

𝑛
+

(𝑥𝑐𝑠 −  𝑥̅ )2

𝑆𝑥𝑥

, (2) 

 

 𝑆𝑦 𝑥⁄  = √
∑ (𝑦𝑖 − 𝑦𝑖̂ )

2𝑛
𝑖=1

𝑛 − 2
; (3) 

 
Where: 
 
𝑺𝒚 𝒙⁄ ) Is the residual or standard error of regressing y on x 

𝒃_𝟏  is the slope of the regression line 

𝒓_𝒄𝒔 is the number of replicates made on the case sample to determine 𝒙_𝒄𝒔  
𝒏 is the number of measurements used to generate the calibration curve  

𝒙_𝒄𝒔 is the mean amount of THC in the case sample 
(𝒙 ) ̅ is the mean value of the different calibration standards 
𝒙_𝒊 is the target calibrator concentration at the 𝒊th level 

𝑺_𝒙𝒙 is the sum of squares deviation of 𝒙 given by ∑_𝒊▒(𝒙_𝒊 − 𝒙 ̅ )^𝟐  
 
The relative standard uncertainty is given by 
 

𝑢𝑟 (CCur) =
𝑢(CCur)

𝑥𝑐𝑠

  (4) 

 
Consider the calibration curve data of peak area ratios for 10 concentration levels {1, 1.5, 2, 2.5, 
3, 4, 5, 6, 8 and 10} µg/L given in Table 8.5-3 along with the coefficients of the linear regression 
and the sum of squared deviations. 
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Concentration 
(x) 

Peak Area Ratios 
(y) 

(𝒙 − 𝒙 ̅ )^𝟐 𝒚 ̂ =  𝒃_𝟎  +  𝒃_𝟏 𝒙 (𝒚 −  𝒚 ̂ )^𝟐 

1 0.50936 10.89000 0.46247 0.00220 

1.5 0.73972 7.84000 0.72863 0.00012 

2 1.00815 5.29000 0.99479 0.00018 

2.5 1.24273 3.24000 1.26095 0.00033 

3 1.53580 1.69000 1.52711 0.00008 

4 2.09479 0.09000 2.05943 0.00125 

5 2.50074 0.49000 2.59175 0.00828 

6 3.06545 2.89000 3.12407 0.00344 

8 4.15375 13.69000 4.18871 0.00122 

10 5.34078 32.49000 5.25336 0.00764 

𝒙 𝑺𝒙𝒙 = ∑(𝒙 − 𝒙 ̅ )^𝟐 ∑(𝒚 −  𝒚 ̂ )^𝟐 

4.3  78.6  0.02474 

Intercept b0 -0.06985 

Slope b1 0.53232 

R2 0.9989 

n 10 

Table 8.5-3: 10 concentration levels versus Peak area ratios, linear regression coefficients and the sum of squares 
of regression for the calibration curve data. 

 
The standard error of regression can be computed using Equation (3) and values from Table 
8.5-3 as 
 

𝑆𝑦 𝑥⁄ = √
0.02474

10 − 2
  

    =  0. 05561 

 

 
From the calibration curve data in Table 8.5-3, at each calibration level, one replicate is analysed 
for generating the calibration curve according to laboratory protocol. To obtain a more reliable 
estimate of the standard error, standard errors from previous calibration curve data can be 
pooled. Pooling the errors gives a better estimate for the standard error of regression by taking 
into account different laboratory conditions over different days. The standard errors of a further 
10 calibration curve data sets is summarised in Table 8.5-4, and the pooled standard error of 
regression, 𝑆𝑝(𝑦 𝑥)⁄

, is calculated using Equation (5) as: 

 

𝑆𝑝(𝑦 𝑥)⁄
= √

∑(𝑛 − 1)𝑆𝑦 𝑥⁄
2

∑(n − 1)
  

= √
0.38558

98
 

= 0.06273 

(5) 
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Substituting the pooled standard error, 𝑆𝑝(𝑦 𝑥)⁄

, as an as an estimate for 𝑆𝑦 𝑥⁄ , the uncertainty of 

the calibration curve from Equation (2) becomes 
 

𝑢(CCur) =  
𝑆𝑝(𝑦 𝑥)⁄

𝑏1

√
1

𝑟𝑐𝑠

+ 
1

𝑛
+  

(𝑥𝑐𝑠 −  𝑥̅ )2

𝑆𝑥𝑥

, 

 

=  
0.06273 

0.53232 
√

1

2
+ 

1

10
+ 

(2 −   4.3 )2

78.6
, 

 

= 0.09626 

 

 
For a given case sample, two replicates are taken 𝑟𝑐𝑠 = 2  and the average reported. For an 
average concentration reading of 𝑥𝑐𝑠 = 2 µg/L, the relative standard uncertainty of the calibration 
curve using Equation (4) is given by 
 

𝑢(CCur) =  
0.09626

2
 

 

                =  0.04813 

 

 

𝒏 𝒏 − 𝟏 𝑆𝑦 𝑥⁄  (𝒏 − 𝟏)𝑺𝒚 𝒙⁄
𝟐

 

10 9 0.05561 0.02784 

0 9 0.05127 0.02366 

10 9 0.03796 0.01297 

10 9 0.07499 0.05061 

10 9 0.04149 0.01549 

10 9 0.04626 0.01926 

10 9 0.05563 0.02786 

10 9 0.04353 0.01705 

10 9 0.11674 0.12265 

10 9 0.04294 0.01660 

9 8 0.08031 0.05160 

 ∑(𝒏 − 𝟏)  ∑(𝒏 − 𝟏)𝑺𝒚 𝒙⁄
𝟐  

 98  0.38558 

Table 8.5-4: The standard error and sum of squares deviation of 11 different calibration curves. 

Uncertainty of the Method Precision 
 
The quality control (QC) data for evaluating the uncertainty of the method precision is 
summarised in Table 8.5-5. Blank blood samples were spiked with THC at three concentration 
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levels: 2 µg/L (low), 5 µg/L (medium), and 10 µg/L (high). For each concentration level, three 
replicates were analysed over eleven separate days using a freshly prepared calibration line 
each day. 
 
The uncertainty associated with the method precision u(Precision) is estimated for each 
concentration level 2µg/L (Low), 5 µg/L (Medium) and 10 µg/L (High) using a pooled standard 
deviation (𝑆_𝑝) approach given by 
 

𝑢(Precision) =
𝑆𝑝

√𝑟𝑐𝑠

 (9) 

 
where 𝑆𝑝, similar to Equation (5) is given by 

 

𝑆𝑃 = √
∑ (𝑣𝑖 × 𝑆𝑖

2)𝑖

∑ 𝑣𝑖𝑖
,  

 
𝑣_𝑖 is the degrees of freedom of the 𝑖th sample, 𝑆_𝑖 is standard deviation of the 𝑖th sample and 

𝑟_𝑐𝑠 is the number of case sample replicates. 
 

The relative standard uncertainty of the method precision, 𝑢_𝑟 (Precision), is calculated by 
dividing the standard uncertainty by its nominal value (NV) or by the mean concentration of 
replicates on NV (𝑥 ̅_𝑁𝑉). 
 

Concentration Peak Area Ratios 

(g/L) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Run 11 

Low            

 2.198 1.825 2.144 2.108 2.065 1.810 1.993 1.829 1.786 2.044 1.851 

2 1.988 1.920 2.166 2.052 2.002 1.806 1.942 1.768 1.880 1.810 1.822 

 2.161 1.851 2.182 1.972 2.152 1.795 1.931 1.826 1.785 1.896 1.701 

Mean 2.11567 1.86533 
2.1640

0 
2.04400 2.07300 

1.8036
7 

1.9553
3 

1.8076
7 

1.8170
0 

1.91667 
1.7913

3 

Std. Dev 0.11210 0.04910 
0.0190

8 
0.06835 0.07532 

0.0077
7 

0.0330
8 

0.0343
9 

0.0545
6 

0.11836 
0.0795

6 

Medium            

 4.885 5.067 4.893 4.986 4.884 4.377 4.969 4.475 4.801 4.731 4.405 

5 4.869 5.266 5.037 4.906 4.913 4.672 4.641 4.549 4.535 4.718 4.472 

 4.806 5.086 5.141 4.867 4.863 4.684 4.737 4.388 4.611 4.709 4.402 

Mean 4.85333 5.13967 
5.0236

7 
4.91967 4.88667 

4.5776
7 

4.7823
3 

4.4706
7 

4.6490
0 

4.71933 
4.4263

3 

Std. Dev 0.04177 0.10982 
0.1245

4 
0.06067 0.02511 

0.1738
9 

0.1686
3 

0.0805
9 

0.1370
1 

0.01106 
0.0395

8 

High            

 9.952 9.945 9.851 10.306 10.054 9.219 9.493 9.732 9.327  8.609 

10 9.910 10.235 9.940 10.299 9.616 9.249 9.091 9.322 8.988 10.972  

 10.002 9.941 9.740 10.840 10.473 9.275 9.225 9.224 9.255 11.199 8.936 

Mean 9.95467 
10.0403

3 
9.8436

7 
10.4816

7 
10.0476

7 
9.2476

7 
9.2696

7 
9.4260

0 
9.1900

0 
11.0855

0 
8.7725

0 

Std. Dev 0.0466 0.16860 
0.1002

0 
0.31035 0.42854 

0.0280
2 

0.2046
9 

0.2695
0 

0.1786
0 

0.16051 
0.2312

2 

Table 8.5-5: Quality control data for concentration levels 2 µg/L (Low), 5 µg/L (Medium) and 10 µg/L (High) over 11 
different days with three replicates each concentration level. 
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𝑢_𝑟 (Precision) =
𝑢(Precision)

NV
,  

 

Concen-
tration 

Nominal 

Value (NV) 

µg/L 

Standard. 

Deviation 

𝑺 

Degrees of 

Freedom 

𝝂 

𝒒 = 

𝑺𝟐  ×  𝝂 

Pooled S 

𝑺𝒑 = 

√∑𝒒/∑𝒗  

Case Sample  

Replicate 

𝒓𝒄𝒔 

Standard 
Uncertainty 

(SU) 

𝒖 = 𝑺𝒑/𝒓𝒄𝒔 

Relative 

SU 

𝒖𝒓  =  𝒖/𝐍𝐕 

Low 2 0.11210 2 0.02513 0.06832 2 0.04831 0.02415 

  0.04910 2 0.00482 

 

  0.01908 2 0.00073 

  0.06835 2 0.00934 

  0.07532 2 0.01135 

  0.00777 2 0.00012 

  0.03308 2 0.00219 

  0.03439 2 0.00236 

  0.05456 2 0.00595 

  0.11836 2 0.02802 

  0.07956 2 0.01266 

      

  ∑𝜈 =  22    ∑𝑞 =  0.10268 

Medium 5 0.04177 2 0.00349 0.10412 2 0.07362 0.01472 

  0.10982 2 0.02412     

  0.12454 2 0.03102     

  0.06067 2 0.00736     

  0.02511 2 0.00126     

  0.17389 2 0.06047     

  0.16863 2 0.05687     

  0.08059 2 0.01299     

  0.13701 2 0.03754     

  0.01106 2 0.00024     

  0.03958 2 0.00313     
         

  ∑𝜈 =  22 ∑𝑞 =  0.23851    

High 10 0.04606 2 0.00424 0.22525 2 0.15927 0.01593 

  0.16860 2 0.05685     

  0.10020 2 0.02008     

  0.31035 2 0.19263     

  0.42854 2 0.36728     

  0.02802 2 0.00157     

  0.20469 2 0.08379     

  0.26950 2 0.14526     

  0.17860 2 0.06380     

  0.16051 1 0.02576     

  0.23122 1 0.05346     

         

  ∑𝜈 =  20 ∑𝑞 =  1.01474    

Table 8.5-6: Uncertainty of the method precision calculation for concentration levels 2 µg/L (low), 5 µg/L (medium), 
and 10 µg/L (high). 

 
The calculations for the uncertainty of method precision are detailed in Table 8.5-6 for each 
concentration level. From Table 8.5-6, the RSU of method precision for a given 𝑥_𝑐𝑠 is the value 
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with the closet nominal value (NV) to 𝑥_𝑐𝑠. Hence, for 𝑥_𝑐𝑠 = 2, the closet nominal value is NV =
2 and the uncertainty 
 

𝑢𝑟(Precision) = 0.02415.  
 
Uncertainty of the Sample Volume 
The RSU of the volume 𝑢(𝑉) of case blood sample is equivalent to the uncertainty of the pipette 
used which is the pipette pip-1000. From Tables 8.5-1 & 8.5-2, the pipette pip-1000 has volume 
1000 L with a tolerance of 5 L and a reference certificate coverage factor of 2. 
 

𝑢(𝑉) = 5/2 = 2.5 µL   
 

𝑢𝑟(𝑉) =
𝑢(𝑉)

𝑉
=

2.5

1000
= 0.0025  

 
 

8.5.2.4  Step 4 - Combined and Expanded Uncertainty 
 
Calculating the Combined Uncertainty 
The concentration of THC in case sample from Equation (1) is 𝑥𝑇𝐻𝐶 = 2/1 = 2 µg/L. The 
combined uncertainty, 𝑢𝑐, is obtained by combing all the individual uncertainty components as 
follows: 
 
 

𝑢𝑐

𝑥𝑇𝐻𝐶

= √𝑢𝑟(Precision)2 + 𝑢𝑟(CalStd)2 + 𝑢𝑟(CCur)2 + 𝑢𝑟(𝑉)2   

 
Hence,  

𝑢𝑐 = 𝑥𝑇𝐻𝐶 × √𝑢𝑟(Precision)2 + 𝑢𝑟(CalStd)2 + 𝑢𝑟(CCur)2 + 𝑢𝑟(𝑉)2 

 

= 2 × √0: 024152  +  0: 03712  +  0: 048132  +  0: 00252 

 

= 0.131 µg/L 

 

 
The Effective Degrees of Freedom and Coverage Factor 
To obtain a suitable coverage factor k, the effective degrees of freedom 𝜈𝑒ff  is calculated using 
the Welch-Satterthwaite equation generally defined as: 
 

𝑉eff =
𝑢𝑐

4

∑ 𝑢(𝑙)
4 /𝑣𝑙𝑙

  (6) 

  
where 𝑢𝑐 is the combined uncertainty, 𝑢(𝑙) is the individual standard uncertainty component 𝑙 

combined to obtain 𝑢𝑐, and 𝜈𝑙 is the degrees of freedom for each uncertainty component 𝑙. With 
the use of relative standard uncertainties for the combined uncertainty, Equation (6) becomes 
 

𝑉eff =
[

𝑢𝑐

𝑥THC
]

4

∑ 𝑢𝑟(𝑙)
4 /𝑣𝑙𝑙
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=
[

𝑢𝑐

𝑥THC
]

4

𝑢𝑟(Precision)4

𝑣(Precision)
+

𝑢𝑟(CalStd)4

𝑣(CalStd)
+  

𝑢𝑟(CCur)4

𝑣(CCur)
+

𝑢𝑟(V)4

𝑣(V)
 
 

 

=
[
0.131

2
]

4

0. 024154

22
+

0.03714

∞
+ 

0.048134

8
+

0.00254

∞

 

 

= 26.8 

 

The degrees of freedom for the preparation of calibration standards and sample volume are 
unknown and therefore 𝑣(CalStd) = 𝑣(𝑉) = ∞. From the t-distribution table with a 99.7% 

confidence interval, a coverage factor of 𝑘𝑉eff,99.7% = 3 is chosen for calculating the expanded 

uncertainty.  
 
Calculating the Expanded Uncertainty 
Finally, the expanded uncertainty is obtained by multiplying the coverage factor by the combined 
uncertainty: 
 

𝑈 = 𝑘 × 𝑢𝑐 
 

= 3 × 0.131 
 

= 0.393µg/L 

 

 
The concentration of THC in the case sample is given by 2± 0.393 µg/L. 
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8.6 Predicting net weights of khat mardoufs 
 
Khat is a flowering plant (Catha Edulis) growing naturally in East Africa and on the Arabic 
peninsula. It is consumed as a drug (chewing), since it contains cathinone (an alkaloid), and is 
classified as a drug of abuse by WHO, however not considered to be a seriously dangerous 
drug. In Sweden, khat is classified as an illicit drug, hence it is illegal to import and have in 
possession. 
 
Khat is prepared in bundles of suitable size for chewing. In the distribution of the drug, several 
bundles are packed into a so-called mardoufs. When smuggled, sacs with about 100 mardoufs 
are shipped. 
 
To avoid drying of the material, a mardouf is wrapped in banana leaves. When customs (or 
police authorities) should deem upon the amount of khat that is seized, there is a tedious work 
of removing all banana leaves before the material can be weighed. Therefore, a model for 
estimating the weights of the wrappings from the gross weight of the seizure to approximate the 
net weight has been developed (integrative approach, see Chapter 6). 
 
 

8.6.1 Linear regression model 
 

In a study at NFC of a total of 260 seized mardoufs their gross weights and wrapping weights of 
the covers were measured. A scatter plot is shown in Figure 8.6-1a. 
 

  

(a) (b) 

Figure 8.6-1: Wrapping weight plotted against gross weight for 260 seized mardoufs of khat (a); and a least-squares 
fitted regression line to the points (b). 
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The relationship between wrapping weight and gross weight seems to be quite linear, although 
there is quite an amount of variation not explained by a linear relationship. A robust model would 
therefore be a linear regression model. Let ww denote the wrapping weight of a and gw denote 
the gross weight of a randomly selected mardouf. The linear regression model is then expressed 
as 
 

𝑤𝑤 = 𝑎 + 𝑏 ∙ 𝑔𝑤 + 𝑒 
 
where b is the slope of the line (of the theoretical linear relationship), a is the intercept (where 
the theoretical line crosses the vertical axis, and e stands for the deviation from the line 
(explaining why not all points lie strictly on a line – usually referred to as the error term). ). For 
the subsequent analysis, we assume that for different pairs of 𝑤𝑤 and 𝑔𝑤 the corresponding 
deviations (the e’s) are independent and identically distributed with zero mean and constant 

variance, 𝜎𝑒
2 (hence also independent of 𝑔𝑤). 

 
 

8.6.2 Prediction of net weight and its uncertainty 
 
Now, once parameter estimates have been obtained, we can predict the net weight, 𝑛𝑤 = 𝑔𝑤 −
𝑤𝑤 of a newly seized mardouf with gross weight 𝑔𝑤0 as 
 

𝑛𝑤0̂ = 𝑔𝑤0 − 𝑤𝑤̂0 = 𝑔𝑤0 − (𝑎̂ + 𝑏̂ ∙ 𝑔𝑤0) = (1 − 𝑏̂) ∙ 𝑔𝑤0 − 𝑎̂ 

 

Moreover, 𝑎̂ and 𝑏̂ are unbiased estimates of a and b respectively and hence 
 

𝐸(𝑛𝑤0̂) = (1 − 𝑏) ∙ 𝐸(𝑔𝑤0) − 𝑎 
 
Thus, a potential bias in this prediction is due to whether there is a bias in the measured gross 
weight of the new mardouf. 
 
The uncertainty of 𝑛𝑤0̂  will however depend both on the uncertainty of the parameter estimates 
and the uncertainty of the measured gross weight of the new mardouf. For the deduction of the 
uncertainty, we use the simplification that the uncertainty of the parameter estimates stems from 
the uncertainty of the measured wrapping weights 𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝑛 only (n = 260 in the 
example). This is how inference for linear regression is regularly pursued – it is a model 
combining the conditional mean of the wrapping weight given a gross weight and the “random” 
deviation from that mean.  
 
We could consider contribution from the uncertainty of the measured gross weights 
𝑔𝑤1, 𝑔𝑤2, … , 𝑔𝑤𝑛, but consequently with much more involved deduction of the uncertainty of 

𝑛𝑤0̂. The scatterplot of wrapping weights against gross weights in Figure 8.6-1b reveals that the 
deviations from an assumed underlying straight line are far from being explained by 
measurement error only – the banana leaves used cannot be tailored to the mardouf they should 
cover, while the uncertainties of the measured gross weights would simply be due to 
measurement error. 
 

Hence, the difference in deduced uncertainty for the expression 𝑎̂ + 𝑏̂ ∙ 𝑔𝑤 between using and 
not using uncertainty in the measured gross weights can be considered negligible compared to 

the level of uncertainty coming primarily from the parameter estimates 𝑎̂ and 𝑏̂. Notwithstanding, 
we will include the measurement uncertainty of the gross weight of the new mardouf even though 
its contribution is expected to be small. 
  



  
APPROVED BY ENFSI BOARD ON 15.02.2024 

 

 

 

Page 57 of 100           GDL QCC-GDL-001       001  15.04.2024 

    

An estimate of the variance of 𝑛𝑤0̂ can be deduced to (using variance calculations from least-
squares fitting of a regression model): 
 

𝑉𝑎𝑟(𝑛𝑤0̂ )̂ = 
 

        =
𝜎̂𝑒

2

∑ (𝑔𝑤𝑖−𝑔𝑤̅̅̅̅̅)2𝑛
𝑖=1

(𝜎̂𝑔𝑤0
2 + (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0)

2
+ (𝑔𝑤̅̅ ̅̅ )2 − 2 ∙ 𝑔𝑤̅̅ ̅̅ ∙ (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0))  

 

+(1 − 𝑏̂)
2

∙ 𝜎̂𝑔𝑤0
2 +

𝜎̂𝑒
2

𝑛
  

 

where 𝜎̂𝑔𝑤0
2  and 𝑏𝑖𝑎𝑠̂0 are taken from an analysis of the uncertainty of the measurement 𝑔𝑤𝑜, 

and 𝜎̂𝑒
2 =

1

𝑛−2
∑ (𝑤𝑤𝑖 − 𝑎̂ − 𝑏̂ ∙ 𝑔𝑤𝑖)

2𝑛
𝑖=1  (usually referred to as the mean square sum of residuals 

or errors, SSE). The expression for the standard uncertainty then becomes 
 

𝑢 = √
𝜎̂𝑒

2

∑ (𝑔𝑤𝑖 − 𝑔𝑤̅̅ ̅̅ )2𝑛
𝑖=1

(𝜎̂𝑔𝑤0
2 + (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0)

2
+ (𝑔𝑤̅̅ ̅̅ )2 − 2 ∙ 𝑔𝑤̅̅ ̅̅ ∙ (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0)) + (1 − 𝑏̂)

2
∙ 𝜎̂𝑔𝑤0

2 +
𝜎̂𝑒

2

𝑛
 

 
Now, assume we have measured the gross weight of a new mardouf to be 65.0 grams. The 
estimated bias of this measurement is rounded off to zero (so small it can be neglected). The 

standard uncertainty is calculated as 𝑢𝑔𝑤0
= √𝜎̂𝑔𝑤0

2 ≈ 0.02 grams. 

 
From the 260 pairs of measured gross weights and wrapping weights plotted in Figure 8.6-1a 
we obtain the following: 
 

∑ (𝑔𝑤𝑖 − 𝑔𝑤̅̅ ̅̅ )2𝑛
𝑖=1 = 22404  ;  𝜎̂𝑒

2 ≈ 14.09  ;  𝑔𝑤̅̅ ̅̅ = 74.8 grams  ; 𝑎̂ ≈ −9.70  𝑏̂ ≈ 0.427  

 
and the standard uncertainty is 
 

𝑢 ≈ √
14.09

22404
(0.022 + (65.0 + 0)2 + 74.82 − 2 ∙ 74.8 ∙ (65.0 + 0)) + (1 − 0.427)2 ∙ 0.022 +

14.09

260
≈ 

 
  ≈ 0.339 

 
 

8.6.3 Expanded uncertainty 
 
For obtaining the expanded uncertainty, we must remember that 𝑛𝑤0̂  is used as a prediction of 
the actual wrapping weight of the new mardouf, while the uncertainty deduced above is for the 
estimation of its expected or mean value.  
The prediction error is  
 

 𝑛𝑤0̂ − 𝑛𝑤0 = 𝑛𝑤0̂ − (𝑔𝑤0 − 𝑤𝑤0) = 𝑛𝑤0̂ − ((1 − 𝑏) ∙ 𝑔𝑤0 − 𝑎 − 𝑒0) 

 
where 𝑒0 is the unknown deviation from the linear relationship between 𝑛𝑤0 and 𝑔𝑤0. This term 

would give a large contribution to the expanded uncertainty compared to 𝑉𝑎𝑟(𝑛𝑤0̂). 
 
The expected (mean) value of the prediction error can easily be shown to be zero, and an 
estimate of the variance of the prediction error can be deduced to 
 

𝑉𝑎𝑟(𝑛𝑤0̂ − 𝑛𝑤0) =̂  
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=
𝜎̂𝑒

2

∑ (𝑔𝑤𝑖 − 𝑔𝑤̅̅ ̅̅ )2𝑛
𝑖=1

(𝜎̂𝑔𝑤0
2 + (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0)

2
+ (𝑔𝑤̅̅ ̅̅ )2 − 2 ∙ 𝑔𝑤̅̅ ̅̅ (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0))  +  𝜎̂𝑒

2 ∙ (1 +
1

𝑛
) 

 

The standard uncertainty of the prediction error is thus 
 

𝑢𝑝𝑒 = √
𝜎̂𝑒

2

∑ (𝑔𝑤𝑖 − 𝑔𝑤̅̅ ̅̅ )2𝑛
𝑖=1

(𝜎̂𝑔𝑤0
2 + (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0)

2
+ (𝑔𝑤̅̅ ̅̅ )2 − 2 ∙ 𝑔𝑤̅̅ ̅̅ (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0)) +  𝜎̂𝑒

2 ∙ (1 +
1

𝑛
) 

 

The prediction error is a linear combination of the product of two random variables (𝑏 − 𝑏̂ and 
𝑔𝑤𝑜) and two other random variables ((𝑎 − 𝑎̂) and 𝑒0 respectively). It is therefore not normally 
distributed, and it is not possible to apply any t-distribution to deduce the expanded uncertainty. 
We may use Chebyshev’s inequality to obtain an interval for the prediction error with coverage 
at least 95%. 
 
Chebyshev’s inequality applied to the prediction error is 
 

𝑃 (|𝑛𝑤0̂ − 𝑛𝑤0| > 𝑘 ∙ √𝑉𝑎𝑟(|𝑛𝑤0̂ − 𝑛𝑤0|)) <
1

𝑘2
  

 

Setting 1 𝑘2⁄  to 0.05 gives 𝑘 = √1 0.05⁄ ≈ 4.47 

 

Hence, an expanded uncertainty for the predicted net weight – considering that the uncertainty 
𝑢𝑝𝑒 is based on an estimate of the true variance of the prediction error – can be set to 

 

𝑈 = 4.5 ∙ √
𝜎̂𝑒

2

∑ (𝑔𝑤𝑖 − 𝑔𝑤̅̅ ̅̅ )2𝑛
𝑖=1

(𝜎̂𝑔𝑤0
2 + (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0)

2
+ (𝑔𝑤̅̅ ̅̅ )2 − 2 ∙ 𝑔𝑤̅̅ ̅̅ (𝑔𝑤0 + 𝑏𝑖𝑎𝑠̂0)) +  𝜎̂𝑒

2 ∙ (1 +
1

𝑛
) 

 
With the numbers used to calculate the uncertainty of 𝑛𝑤0̂ in the previous section the expanded 
uncertainty becomes  
 

𝑈 ≈ 4.5 ∙ √
14.09

22404
(0.022 + (65.0 + 0)2 + 74.82 − 2 ∙ 74.8 ∙ (65.0 + 0)) + 14.09 ∙ (1 +

1

260
) ≈ 

 
≈ 17.0 

 
The net weight of a mardouf weighing 65.0 grams is thus (1 − 0.427) ∙ 65.0 − (−9.70) ≈ 46.9 
grams with a 95% error margin of 17.0 grams. 
 
We note that the impact of the uncertainty (0.02) of the measured weight of 65.0 grams is 
negligible. 
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8.7 Velocity estimation on a speeding car in video images 
 

In the previous examples it often was described how to deal with measurement uncertainty in 
cases where many reference measurements are available, such as through control charts. In 
casework where this is not the case it may be relevant what the (combined) measurement 
uncertainty is as well though and publications are found in literature as well. One example is that 
of velocity estimation on a speeding car in video images, see [20, 21]. Here limited controlled 
experiments are performed, based on which measurement uncertainty is determined (integrative 
approach, see Chapter 6). 
 
Closed Circuit TV (CCTV) systems often record vehicle motion prior to incidents. From the 
footage an estimate of the average velocity of the vehicle between two frames can be calculated. 
Estimation may be based on estimating the travelled distance of the car between two images 
and the time elapsed on the camera system, estimation of the velocity is by division of the two. 
In [20] and [21] it is described how it is possible to quantify the corresponding measurement 
uncertainty. 
 
The measurement uncertainty on the reported velocity may be derived using validation 
recordings of a car driving by at known velocity. If for example a statistical linear regression 
model is applicable, confidence or (Bayesian) probability intervals can be determined for the 
unknown velocity of the speeding car. An example of this is as follows. 
 
 

8.7.1 Case 
 
A car driving by is recorded by a camera system (CCTV-system). In figure 8.7-1, two consecutive 
images are shown of the car driving by. Just beyond the view of the camera the car hits a 
motorbike and the driver of the motorbike dies. The question is: what was the velocity of the car 
driving by in the video? 
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Figure 8.7-1: Two consecutive images of the car driving by in the case. 

 
 

8.7.2 Method 
 
The average velocity of the car is calculated from the video images using a 3D-model from the 
scene and the car. To calculate the measurement uncertainties an investigation at the scene 
took place. Test drives with a similar car were carried out at different velocities. The ground truth 
of the velocity was recorded by a data logger and the test drives were recorded (reference 
recordings) by the same CCTV-system that recorded the incident. The velocity of the car in the 
reference recordings is measured using the same method (3D-model) as was used for the 
incident recording. The differences between the measured velocity (from the images) and real 
velocity (from the data logger) is used to calculate the systematical and random error. These 
two errors are used to calculate the measurement uncertainties and calculate a confidence 
interval for the velocity of the car in the images of the incident. The statistical model to obtain 
the confidence interval is described in [20]. In figure 8.7-2, two consecutive images are shown 
of a car driving by in a test drive. 
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Figure 8.7-2: Two consecutive images of a car driving by in a test drive. 

 
 

8.7.3 Results 
 
Results of the test drives are given in Table 8.7-1. 
 

Reference drive Measured (km/h) Real (km/h) 

1 60.9 61.6 

2 70.3 71 

3 79.5 81.5 

4 88.8 90.5 

5 98.2 99.8 

6 32.4 33 

7 40.4 41.3 

8 49.7 50.5 

9 59.2 60.9 

10 68.8 70.3 

11 79.5 81.5 

12 89.3 91.5 

13 98.3 100.1 

14 30.1 30.8 

15 39.2 40.3 

16 59.5 60.9 

17 68.6 70.6 

18 78.0 79.8 

19 89.0 90.3 

20 97.9 99.6 

21 30.0 30.5 

Table 8.7-1: Results for the measured and real velocities in the test drives. 
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In Figure 8.7-3 the results are depicted. 

 

Figure 8.7-3: Illustration of the results of 21 test drives. On the x-axis, the real velocity of the car is given, on the y-
axis the calculated / measured velocity. 

 
Overall the results are as follows:  
 

• Measured average velocity of the questioned car in the images: vimage = 62.8 km/h; 

• Number of test drives: n = 21; 

• Average difference from measured velocity – real velocity over all test drives: 

𝛿̅ = - 1.36 km/h; 

• Standard deviation from average difference: s = 0.54 km/h. 

 

The average difference of 𝛿̅ = -1.36 km/h means that the measured velocity in the images is on 
average systematically underestimated by 1.36 km/h. The measurement of the average velocity 
of the car is compensated for this systematical error and therefore becomes: 
 

vincindent = vimage -  𝛿̅  = 62.8 km/h + 1.36 km/h = 64.2 km/h. 
 
The boundaries of the confidence interval can be derived by calculating the contribution of the 
random error vrandom: 
 

𝑣𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑠 𝜉𝑛−1,𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒√1 +
1

𝑛
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where  ξn-1, confidence is the quantile corresponding to the Student’s t distribution with n-1 degrees 
of freedom and given level of confidence. In the reference [20] quantiles are given for (n-1) = 
1,…,∞ and, confidence level 90% , 95%, 97.5% and 99%, for 2-sided intervals. 
 
With the number of test drives being n = 21, so (n-1) = 20, gives a quantile of ξ20,95% = 2.09 for 
a 95% confidence interval. The random error becomes: 
 

vrandom = 0.54 x 2.09 x √(1+(1/21)) = 1.16 km/h. 
 
The upper limit of the 95% confidence interval can now be calculated by 
 

vincindent + vrandom = 64.2 km/h + 1.16 km/h = 65.3 km/h 
 
(rounded to one decimal after full digit calculation) and the lower limit by 
 

vincindent - vrandom = 64.2 km/h – 1.16 km/h = 63.0 km/h. 
 
Therefore, the 95% confidence interval for the average velocity of the car is: 
 

vincident = [63.0, 65.3] km/h. 
 
In [21], a Bayesian approach is described in which based on a linear regression model, 
probability distributions are generated for the model parameters and subsequently the velocity 
of a car in a case. 
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10 AMENDMENTS AGAINST PREVIOUS VERSION 
 
Not applicable. This is the first version. 
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ANNEX I. STATISTICAL BACKGROUND TO DETERMINATION OF 
MEASUREMENT UNCERTAINTY BASED ON IN-HOUSE 
VALIDATION OR PROFICIENCY TESTING 

 
 
The term “measurement uncertainty” reveals that what is measured is not to be treated as exact. 
Expressing it differently, it means that if we make another measurement, we do not expect to 
get exactly the same value as with the first measurement. This in turn means that there is some 
unpredictable variation in the outcomes of measurements, and variation as a concept is what 
constitutes the base for statistical science. 
 
Although there is unpredictable variation present, we must try as far as possible to quantify how 
big it is and to what extent it affects the interpretation of measured values. If we for instance 
should make a quantification of the purity of some drug powder, e.g. amphetamine, our 
measurement may give a value like 57.3%. This can be from a single quantification analysis, or 
it can be the average of a few repeated analyses. No matter which, it is important to know how 
accurate this measurement is with respect to what the true purity of the powder is. The 
unpredictable variation may be large meaning that the true purity may with high certainty be in 
a quite wide interval, say between 45% and 70%, which means that a reported value of 57.3% 
is not that accurate. But it can also be in a narrower interval, say between 55% and 59% in which 
case 57.3% would be considered accurate, especially with respect to future decisions in the 
judicial process that will make use of the reported result from this quantification. 
 
Therefore, outcomes of measurements should always be accompanied by appreciated 
uncertainties of the reported values to guide the end-user on the accuracy of them. 
 
 

AI.1 PRECISION AND ACCURACY 
 
The two terms precision and accuracy are sometimes confused (and may also be confused with 
the term resolution). We revisit the definition of precision and accuracy in terms of measurement 
uncertainty: 
 
Precision is how much a measurement may vary with respect to all sources of variation. To 
quantify the precision, measures of dispersion from statistical models are used, of which the 
most common is variance (or standard deviation). 
 
Accuracy is how close to the target value a measurement is. This has not only to do with the 
variation of the measurement, but also whether there are systematic deviations or not. A 
measurement may have high precision but may still have low accuracy. To quantify the accuracy 
both measures of location and dispersion from statistical models must be used. 
 
 

AI.2 RANDOM VARIABLES 
 
A quantity - like a measurement - the value of which is not fixed and cannot be exactly predicted 
on forehand is referred to as a random variable. There can however be knowledge about how it 
varies – which values it can attain and with which probabilities these values are attained. This is 
referred to as the probability distribution of the random variable. One important characteristic of 
such a probability distribution is its mean or average, which is the “centre” of the distribution. In 
this text we will use the term average since this is the used term in several other guidelines and 
quality documents on measurement uncertainty. However, it is important to separate the 
average value of a random variable from the average of a fixed number of measurements (a 
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sample average or arithmetic mean). The latter is a quantity based on collected data, while the 
former is a theoretical and usually unknown quantity. This is the reason to why in the statistical 
literature the term mean or expected value is preferred. 
 
Another important characteristic of a probability distribution is its variance, which measures the 
dispersion of the possible values (the range of the probability distribution).  
 
In statistical models these two measures can be straightforwardly calculated for sums of random 
variables – here applied to combination of components of measurement uncertainty. When the 
random variables do not affect each other in their values, referred to as independent in statistical 
theory, their averages and variances can be summed to obtain the average and variance of their 
sum, which is an important property used in combining components of measurement 
uncertainty. 
 
Related to the variance is the standard deviation, which is simply the square root of the variance. 
This measure is easier to interpret since it is on the same scale as the random variable itself, 
but in contrast to the variance, the standard deviation of a sum of random variables is not the 
sum of the standard deviations for the individual random variables. To obtain the standard 
deviation of a sum of several independent random variables, we must first calculate the sum of 
the variances and then take the square root this sum to obtain the standard deviation. 
 
In mathematical notation we can write it like the following: 
 

X is a random variable, its average is denoted 𝜇, its variance is denoted 𝜎2 and its standard deviation is 
(naturally) denoted 𝜎. 
 

If 𝑌 = 𝑎 ∙ 𝑋 + 𝑏, where 𝑎 and 𝑏 are any constants, then 𝜇𝑌 = 𝑎 ∙ 𝜇 + 𝑏, 𝜎𝑌
2 = 𝑎2 ∙ 𝜎2, and 𝜎𝑌 = |𝑎| ∙ 𝜎, where 

|𝑎| is the absolute value of 𝑎 (e.g. |2| = 2, |−2| = 2). 
 

If 𝑋1, 𝑋2, … , 𝑋𝑛 are n independent random variables with averages 𝜇1, 𝜇2, … , 𝜇𝑛 and variances 𝜎1
2, 𝜎2

2, … , 𝜎𝑛
2; 

and 𝑆𝑢𝑚 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, then the average of 𝑆𝑢𝑚 is 
 

𝜇𝑆𝑢𝑚 = 𝜇1 + 𝜇2 + ⋯ + 𝜇𝑛 , 
 
the variance of 𝑆𝑢𝑚 is  
 

𝜎𝑆𝑢𝑚
2 = 𝜎1

2 + 𝜎2
2 + ⋯ + 𝜎𝑛

2 , 
 
and the standard deviation of 𝑆𝑢𝑚 is 
 

𝜎𝑆𝑢𝑚 = √𝜎1
2 + 𝜎2

2 + ⋯ + 𝜎𝑛
2 . 

 

If 𝑋1, 𝑋2, … , 𝑋𝑛 have equal averages (= 𝜇) and equal variances (= 𝜎2) their arithmetic mean 𝑋̅(𝑛) =
𝑋1+𝑋2+⋯+𝑋𝑛

𝑛
 has average 𝜇, variance 

𝜎2

𝑛
, and standard deviation 

𝜎

√𝑛
. 
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AI.3 MEASUREMENTS AND MEASURANDS – STATISTICAL MODEL 
 
To understand how the different components of calculating measurement uncertainty occur, we 
must formalise the measurement situation and introduce terms representing these components. 
From now on we will use the term “estimate” instead of “calculate”, since estimate means 
(numerical) approximation of an unknown quantity, while calculate is a more general term. 
 
A measurement is from a data point of view the obtaining of a numerical value. We choose to 
denote this value 𝑥. 
This measurement is treated as an approximation of the true value of the measurand (the 
quantity to be measured). We denote this value 𝑚. 
 
The relationship between 𝑥 and 𝑚 constitutes the ground from which the components of an 
estimated measurement uncertainty are identified and estimated. This relationship should 
account for 
 

• bias – the systematic difference between the measurement and the measurand, which 
is the difference between the average of (an infinite) number of measurements made on 
the same object and the true value of the measurand (of this object) 
 

• repeatability – the measurement precision under a set of repeatable conditions (same 
apparatus, sample, operator, room temperature etc.) 
 

• reproducibility – the degree of agreement between measurements made on the same 
object (identical samples of it) under different investigating situations (e.g. using different 
apparatus, operators, time and date, environmental conditions etc.) 
 

• stability – how stable the measurement process is over time, i.e. how the accuracy of the 
measurements changes 
 

Stability may be included in reproducibility assuming different dates is a kind of investigation 
situation. High degrees of repeatability and reproducibility respectively actually mean low 
variation among the measurements, but in a statistical model it is impractical do use such 
degrees as components since they then would have to be inverted to show their contribution to 
the uncertainty. Therefore, repeatability and reproducibility are represented by the variance they 
contribute with. 
 
In the statistical literature repeatability is usually referred to as unexplained variation (or 
sometimes random error), while reproducibility is referred to as explained variation since it is 
possible to trace it back to its source (different instruments, different operators etc.). Stability is 
related to time and is of main interest for studying the performance of a particular instrument (or 
a general measurement setup) over time to estimate drift. When the measurement uncertainty 
of a particular result should be estimated it is therefore more practical to include it in the degree 
of reproducibility. 
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AI.3.1 The General Model 
 
A statistical model for the relationship between the measurement 𝑋 and the measurand 𝑚 can 
be written 
 
 𝑋 = 𝑚 + 𝐵 + 𝐷 + 𝐸 (1) 

 
where 𝐵 (naturally) stands for the deviation between 𝑋 and 𝑚 due to the bias, 𝐷 stands for the 

deviation between 𝑋 and 𝑚 due to the degree of reproducibility, i.e. due to that a certain 
instrument, operator etc. have been used, and 𝐸 stands for the deviation between 𝑥 and 𝑚 due 
to the degree of repeatability, i.e. due to the unexplained variation between repeated 
measurements on the same object under the same conditions.  
In a traditional setup the components 𝑚 and 𝐵 in expression (1) are both fixed, but their values 
are not known. The term 𝐵  would then be the actual deviation between the measurement 𝑥 and 

the value of the measurand 𝑚 due to a systematic error. However, when measurement 
uncertainty in general should be appreciated it has to be considered that the bias may vary from 
case to case. Hence, the term  𝐵 should rather be considered as a random contribution to the 
measurement that is separate from the contributions due to reproducibility or repeatability. This 
also means that seen over all possible measurements that can be taken there is an average 
bias, which we can denote 𝑏. This can be written as 
 

𝐵 = 𝑏 + 𝛿 
 
where 𝑏 is the average bias (of measurements of the current measurand) and 𝛿 is the random 

deviation with average 0 and variance 𝜎𝐵
2. 

 
The components 𝐷 and 𝐸 are both in the analysis of measurement uncertainty considered to be 
random with zero as average value. However, their variances must be considered when 
estimating measurement uncertainty. 
 
From (1) we can see that the measurement error is 
 
 𝑄 =  𝑋 − 𝑚 = 𝐵 + 𝐷 + 𝐸 (2) 

 
 

AI.3.2 A simplified model 
 
The separation of variation due to the degrees of reproducibility and repeatability respectively 
that is used in expressions (1) and (2) allows for separate estimation of the contributions to 
uncertainty from these components. However, in practice the variation due to the degree of 
repeatability is usually small compared to the variation due to the degree of reproducibility. 
Moreover, to obtain robust estimates of these two components a quite comprehensive 
experimental design is needed, which is not feasible to set up for each kind of measurement 
situation. Therefore, it is common to let 𝐷 + 𝐸 in expressions (1) and (2) be represented by one 
component only, that accounts for the variation due to both the degree of reproducibility and the 
degree of repeatability. In literature on measurement uncertainty this is often referred to as 
variation due to the degree of reproducibility within laboratory. Here this component will be 
denoted 𝑅𝑤 (where the subscript “𝑤” stands for “within laboratory”) and the simplified model is 
expressed as 
 
 𝑋 = 𝑚 + 𝐵 + 𝑅𝑤 (3) 

 
and the measurement error can be written 
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 𝑄 =  𝑋 − 𝑚 = 𝐵 +  𝑅𝑤 (4) 

 
If the bias term 𝐵 would be considered as constant then the variance of the measurement 𝑋 

(and of the measurement error 𝑄) would be the variance of 𝑅𝑤, which can be denoted 𝜎𝑅𝑤

2 . 

However, treating the bias as a random component the correct expressions for the variance of 
the measurement and the measurement error are 
 

 𝜎𝑋
2 = 𝜎𝐵

2 + 𝜎𝑅𝑤

2  (5) 

 
and 
 

 𝜎𝑄
2 = 𝜎𝐵

2 + 𝜎𝑅𝑤

2  (6) 

 
respectively (provided we can assume that the components 𝐵 and 𝑅𝑤 are independent). 
A graphical illustration of expressions (3)-(5) is shown in Figure AI.1. 

 

Figure AI- 1: The measurement 𝑋 varies primarily due to the degree of reproducibility illustrated with the blue curve 

(probability distribution) and with the standard deviation 𝜎𝑅𝑤
, but may also have a bias with average 𝑏 and standard 

deviation 𝜎𝐵 (illustrated with the red curve). The measurand 𝑚 deviates from the average of 𝑋 (when bias is 

present). Note that 𝑚 can also be to the left of the average of 𝑋.  

 
 

AI.4 UNCERTAINTY AND EXPANDED UNCERTAINTY 
 
In literature on measurement uncertainty the standard uncertainty is usually defined as the 
square root of the so-called combined uncertainty, where the latter is a sum of the estimated 
variances from the different variables contributing to the variation of the measurement 𝑋 plus a 
squared contribution from the bias. With the simplified model in expression (3) above the 
standard uncertainty, 𝑢, could be written 
 

 𝑢 = √𝑢𝐵
2 + 𝑠𝑅𝑤

2  (7) 

 

where 𝑠𝑅𝑤

2  would be a (standard) estimate of 𝜎𝑅𝑤

2  obtained within the laboratory and 𝑢𝐵
2  

represents the bias contribution. 

 
 
AI.4.1 Expanded uncertainty 
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The expanded uncertainty is defined as the standard uncertainty multiplied with a so-called 
coverage factor to account for a pre-specified range of possible values that the measurement 𝑋 
can take. To understand this better, we give a short account for how the standard deviation of a 
random variable relates to the range of possible values for that variable. 
 
For any random variable 𝑋 with average 𝜇 and standard deviation 𝜎 the following holds: 
 
 The interval 𝜇 ± 1.5 ∙ 𝜎 comprises at least 55 % of all possible values of 𝑋 
 The interval 𝜇 ± 2 ∙ 𝜎 comprises at least 75% of all possible values of 𝑋 

 The interval 𝜇 ± 3 ∙ 𝜎 comprises at least 88% of all possible values of 𝑋 
 The interval 𝜇 ± 4 ∙ 𝜎 comprises at least 93% of all possible values of 𝑋 
 
A mathematical result called Chebyshev’s inequality states that 𝜇 ± 𝑘 ∙ 𝜎 comprises at least 100 ∙
(1 − 1 𝑘2⁄ )% of all possible values of 𝑋 for 𝑘 > 1. 𝑘 is referred to as the coverage factor. 
 
However, if 𝑋 is normally distributed the intervals become narrower: 
 

 

𝜇 ± 𝜎     comprises about 68% of all possible values 

𝜇 ± 2 ∙ 𝜎 comprises about 95% of all possible values 
𝜇 ± 3 ∙ 𝜎 comprises about 99.87 % of all possible values 

(8) 

 
This can be used to motivate that for a single measurement 𝑋 that is assumed to be normally 

distributed with standard deviation 𝜎, the interval 𝑋 ± 2 ∙ 𝜎 covers the average 𝜇 of 𝑋 with 95% 
confidence, a so-called 95% confidence interval. 
 
Nevertheless, the theoretical standard deviation of 𝑋 is rarely known (if ever), and so it must be 
estimated from available data. Using the simplified model in expression (3) above and assuming 
there is no bias, the standard deviation of 𝑋 is estimated by 𝑠𝑅𝑤

 in expression (7). If that estimate 

is based on sufficiently many measurements (say at least 50) typically from a control chart the 
coverage factor 2 would give approximately 95% confidence, i.e. 𝑋 ± 2 ∙ 𝑠𝑅𝑤

 is an approximate 

95% confidence interval for the measurand 𝑚. However, it is very important to remember that if 
the number of measurements used for this estimation is much fewer than 50, the confidence will 
be much lower. See also section 6. 
 
In this confidence interval it is assumed that 𝑋 is a single measurement. However, when it is the 

average of 𝑛 measurements (where 𝑛 may often be equal to 2 or 3), we must divide 𝑠𝑅𝑤
 with √𝑛 

(cf. section 2). 
 
When bias is present the situation is more complicated. Using expression (5) above we could 

estimate the standard deviation of 𝑋 with √𝑠𝐵
2 + 𝑠𝑅𝑤

2  (or √𝑠𝐵
2

𝑛
+

𝑠𝑅𝑤
2

𝑛
 if an average of 𝑛 

measurements is used) , where 𝑠𝐵 would be an estimate of the standard deviation of the bias 𝐵, 
also based on sufficiently many measurements. But it is very difficult to obtain such an estimate. 

Moreover, the interval 𝑋 ± 2 ∙ √𝑠𝐵
2 + 𝑠𝑅𝑤

2  would be a 95% confidence interval for 𝑚 + 𝑏, and we 

still would not know the value of  𝑏.  
 
We present here two alternative ways of including the contribution from bias into the expanded 
uncertainty. The first is to estimate 𝑏 and 𝜎𝐵 together and include this estimate into the 
expression for the standard uncertainty, and then compute the expanded uncertainty. This 
means that the coverage factor would correspond to a higher confidence than what is given by 
the intervals (8) above.  The second is to estimate 𝑏 and add its absolute value to the expanded 
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uncertainty deduced with the assumption of no bias. This means that the total expanded 
uncertainty will cover a larger range of values than is set by the coverage factor. 
 
 

AI.4.2  Joint estimation of the bias contribution 
 
To estimate the bias contribution, we need a set of measurements where the measurand is 
known. This can be done in several ways. 
 
 

AI.4.2.1 Within-laboratory estimation 
 
One way is to make repeated measurements within the laboratory on a material for which the 
measurand is known. This could be a certified reference material (CRM) provided by an institute 
of standards or unit conducting proficiency tests. Denote the value of this measurand 𝑚CRM. 
Now, assume we have made p measurements on this material and denote these measurements 
𝑥1, 𝑥2, … , 𝑥𝑝. For the differences between the measurements and the measurand, i.e. 𝑑1 = 𝑥1 −

𝑚CRM, 𝑑2 = 𝑥2 − 𝑚CRM, … , 𝑑𝑝 = 𝑥𝑝 − 𝑚CRM it is common to compute the so-called mean square 

deviation (𝑀𝑆𝐷), i.e. 
 

 𝑀𝑆𝐷𝑤 =
1

𝑝
∙ ∑ 𝑑𝑖

2

𝑝

𝑖=1

=
1

𝑝
∙ ∑(𝑥𝑖 − 𝑚CRM)2

𝑝

𝑖=1

 (9) 

 
(where the subscript “𝑤” refers to within-laboratory estimation, see subsection AI.4.2.2.). In the 
literature, it is also common to refer to the root mean square deviation (𝑅𝑀𝑆), which is simply 

the square root of 𝑀𝑆𝐷, i.e. 𝑅𝑀𝑆 = √𝑀𝑆𝐷. 
 
Applying the simplified model (3), i.e. 𝑋 = 𝑚CRM + 𝐵 + 𝑅𝑤, with 𝐵 = 𝑏 + 𝛿 where 𝛿 has average 

zero and variance 𝜎𝐵
2, it can be shown – assuming 𝐵 and 𝑅𝑤 are independent random variables 

that 𝑀𝑆𝐷𝑤 is on the average equal to 𝜎𝑋
2 + 𝑏2 = 𝜎𝐵

2 + 𝜎𝑅𝑤

2 + 𝑏2 (taking into account the random 

fashion of the measurements)10. 
 
Hence, using the square root of 𝑀𝑆𝐷𝑤 as standard uncertainty would on the average include 
the expected bias. Nevertheless, since the number of measurements, 𝑝, usually cannot be that 
high, it is not possible to use the standard coverage factors (from (7)) to calculate the expanded 
uncertainty. 
 
However, when a certified reference material is delivered to the laboratory, it usually comes with 
the material provider’s assessment of uncertainty, i.e. 𝑚CRM is obtained using a high-accuracy 
measurement method, but some dispersion cannot be avoided. It can be assumed that this 
measurement method is free from bias, but there is a small standard deviation, 𝜎CRM that should 
not be ignored. This standard deviation is delivered by the material provider either on absolute 
or relative form (see further section AI.5), and is used in the estimation of measurement 
uncertainty as a known quantity, i.e. should not be estimated by the laboratory. 
 

Some literature (see e.g. [9]) suggests using as standard uncertainty11 
 

 
10 With 𝐸(∙) denoting the expected value (average), 𝐸 [

1

𝑝
∑ (𝑋𝑖 − 𝑚CRM)2𝑝

𝑖=1 ] = 

𝐸 [
1

𝑝
∑ (𝑋𝑖 − (𝑚CRM + 𝑏) − 𝑏)2𝑝

𝑖=1 ] = 𝐸 [
1

𝑝
∑ ((𝑋𝑖 − (𝑚CRM + 𝑏))

2
+ 𝑏2 − 2(𝑋𝑖 − (𝑚CRM + 𝑏))𝑏)

𝑝
𝑖=1 ] =

1

𝑝
[∑ 𝐸 [(𝑋𝑖 − (𝑚CRM + 𝑏))

2
]

𝑝
𝑖=1 +

𝑝𝑏2 − 2𝑏 ∙ 0] = 𝑉𝑎𝑟(𝑋𝑖) + 𝑏2 = 𝜎𝑋
2 + 𝑏2 = 𝜎𝐵

2 + 𝜎𝑅𝑤

2 + 𝑏2  

 
11 The notation used here is different from the one used in other literature, but the components have their counterparts. 



  
APPROVED BY ENFSI BOARD ON 15.02.2024 

 

 

 

Page 74 of 100           GDL QCC-GDL-001       001  15.04.2024 

    

 𝑢𝑤 = √𝑀𝑆𝐷𝑤 + 𝜎CRM
2 + 𝑠𝑅𝑤

2  (10) 

 
and for 95% confidence compute the expanded uncertainty as 
 

 𝑈𝑤 = 2 ∙ √𝑀𝑆𝐷𝑤 + 𝜎CRM
2 + 𝑠𝑅𝑤

2  (11) 

 

While this would give a confidence greater than 95% (provided 𝑠𝑅𝑤

2  is based on sufficiently many 

observations), it should be noted that the contribution from the term 𝑅𝑤 in the simplified model 
is double counted, why the expanded (and standard) uncertainty may be too large compared to 
the quality standard used at the laboratory. When an average of 𝑛 measurements is used the 
corresponding expressions for the standard uncertainty and expanded uncertainty are 𝑢𝑤 =

√𝑀𝑆𝐷𝑤 + 𝜎CRM
2 +

𝑠𝑅𝑤
2

𝑛
  and  𝑈𝑤 = 2 ∙ √𝑀𝑆𝐷𝑤 + 𝜎CRM

2 +
𝑠𝑅𝑤

2

𝑛
 respectively. 

 

 
Example 1 
Suppose a method of measuring refractive index of glass at a laboratory has over a longer time shown a 
standard deviation of 0.00025 for the variation due to reproducibility within laboratory, i.e. 𝑠𝑅𝑤

= 0.00025. A 

reference glass with a certified refractive index of 1.52000 (𝑚CRM) with reported standard deviation 0.0000002 

is measured 𝑝 =10 times with the following result: 
 
 1.51996   1.52009   1.52006   1.52049   1.52008 
 

1.52008   1.51967   1.52008   1.51981   1.52001 
 

𝑀𝑆𝐷𝑊 =
1

10
∙ [(1.51996 − 1.52000)2 + (1.52009 − 1.52000)2 + ⋯ + (1.52001 − 1.52000)2] ≈ 4.18 ∙ 10−8 

 
The expanded uncertainty with coverage 95% then becomes 
 

𝑈𝑤 = 2 ∙ √4.18 ∙ 10−8 + 0.00000022 + 0.000252 ≈ 0.0065 

 
 
 

AI.4.2.2 Using proficiency tests 
 
Another way is to use results from proficiency tests in which the laboratory together with other 
laboratories has participated. In these test samples from a certified reference material are sent 
out to the participating laboratories, however, not necessary with detailed information about its 
certified value. Assume the laboratory has taken part in 𝑝 such tests for the measurand of 
interest. 
 
In test 𝑖 (𝑖 = 1,2, … , 𝑝) assume there are 𝑛𝑖 other laboratories participating and that we therefore 
have 𝑛𝑖 reported measurement results (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛𝑖

) from these. For the current laboratory 

the reported result is denoted 𝑥𝑖. Now, with 𝑑𝑖 = 𝑥𝑖 − 𝑦̅𝑖, where 𝑦̅𝑖 is the sample average of the 

𝑛𝑖 reported results from the other laboratories12, the counterpart of 𝑀𝑆𝐷0 in expression (9) would 
be 
 

 𝑀𝑆𝐷 =
1

𝑝
∙ ∑ 𝑑𝑖

2

𝑝

𝑖=1

=
1

𝑝
∙ ∑(𝑥𝑖 − 𝑦̅𝑖)2

𝑝

𝑖=1

 (12) 

 

 
12 𝑦̅𝑖 =

1

𝑛𝑖
∙ ∑ 𝑦𝑖𝑗

𝑛𝑖
𝑗=1  
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With some algebra it can be shown that 𝑀𝑆𝐷 is on the average equal to 𝜎𝑋
2 + 𝑏2 + Δ, where Δ 

denotes an average of the average squared distances between the measurand value 𝑚𝑖 and 𝑦̅𝑖 

over the 𝑝 proficiency tests13. 
 
Following the arguments in subsection AI.4.2.1 the standard uncertainty could be taken as 
 

 𝑢 = √𝑀𝑆𝐷 + 𝑠𝑅𝑤

2  (13) 

 
and the expanded uncertainty as 
 

 𝑈 = 𝑘 ∙ √𝑀𝑆𝐷 + 𝑠𝑅𝑤

2  (14) 

 
with 𝑘 being the coverage factor used, keeping in mind that this again is an overestimation of 
the uncertainty. Note that here we have no counterpart to 𝜎CRM. It is common practice to neither 

provide 𝑚CRM nor 𝜎CRM to prevent laboratories from tuning their results to conform as well as 
possible to the expected.  In some literature (e.g. [9]) methods for appreciating this contribution 
to the dispersion is provided, though. When an average of 𝑛 measurements is used the 
corresponding expressions for the standard uncertainty and expanded uncertainty are 

𝑢 = √𝑀𝑆𝐷 +
𝑠𝑅𝑤

2

𝑛
  and  𝑈 = 2 ∙ √𝑀𝑆𝐷 +

𝑠𝑅𝑤
2

𝑛
 respectively. 

  

 
13 With the model 𝑋𝑖 = 𝑚𝑖 + 𝐵 + 𝑅𝑤 and with 𝐸(∙) denoting the expected value (average),  

𝐸 [
1

𝑝
∑ (𝑋𝑖 − 𝑌̅𝑖)2𝑝

𝑖=1 ] = 𝐸 [
1

𝑝
∑ (𝑋𝑖 − 𝑚𝑖 + 𝑚𝑖 − 𝑌̅𝑖)2𝑝

𝑖=1 ]  

= 𝐸 [
1

𝑝
∑ [(𝑋𝑖 − 𝑚𝑖)2 + (𝑚𝑖 − 𝑌̅𝑖)2 + 2(𝑋𝑖 − 𝑚𝑖)(𝑚𝑖 − 𝑌̅𝑖)]𝑝

𝑖=1 ] = 𝐸 (
1

𝑝
∑ (𝑋𝑖 − 𝑚𝑖)2𝑝

𝑖=1 )  

+𝐸 (
1

𝑝
∑ (𝑚𝑖 − 𝑌̅𝑖)2𝑝

𝑖=1 ) +
2

𝑝
∑ 𝐸(𝑋𝑖 − 𝑚𝑖)𝐸(𝑚𝑖 − 𝑌̅𝑖)𝑝

𝑖=1 ≈ 𝜎𝑋
2 + 𝑏2 + 𝐸 (

1

𝑝
∑ (𝑚𝑖 − 𝑌̅𝑖)2𝑝

𝑖=1 ) , assuming 𝐸(𝑚𝑖 − 𝑌̅𝑖) ≈ 0,  since the variance of 

𝑋𝑖 does not depend on 𝑖 and 𝑋𝑖 and 𝑌̅𝑖 are independent and using the deduction in footnote 9. 
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Example 2 
Return to Example 1 with refractive indices. Suppose the laboratory has taken part in 10 proficiency tests and 
that their reported results are the values given in Example 1, i.e. 

1.51996   1.52009   1.52006   1.52049   1.52008   1.52008   1.51967   1.52008   1.51981   1.52001 

Now, the reported results from the other laboratories are summarised as 
 

Proficiency test (𝑖) No. participating labs (𝑛𝑖) Average of reported results (𝑦̅𝑖) 

1 10 1.52004 

2 8 1.51992 

3 11 1.52001 

4 7 1.52003 

5 9 1.51997 

6 10 1.52010 

7 9 1.52002 

8 8 1.51986 

9 10 1.51999 

10 8 1.52000 

 

𝑀𝑆𝐷 =
1

10
∙ [(1.51996 − 1.52004)2 + (1.52009 − 1.51992)2 + ⋯ + (1.52001 − 1.52000)2] ≈ 4.65 ∙ 10−8 

The expanded uncertainty with coverage 95% then becomes 𝑈 = 2 ∙ √4.65 ∙ 10−8 + 0.000252 ≈ 0.00066 

 
 
 

AI.4.3 Separating the bias contribution from the expanded uncertainty 
 
𝑀𝑆𝐷 and 𝑀𝑆𝐷𝑤 as defined in the previous sections account for both the average bias and the 
dispersion in bias as parameters in the model. 
 
We use the same notation for the number of measurements/proficiency tests and the (reported) 
measurements as in the previous subsections. 
 
Whether we use measurements within the laboratory (as in AI.4.2.1) or reported results from 
proficiency tests (as in AI.4.2.2), we obtain a set of differences between the measurement from 
the current laboratory and a reference value for the measurand. Instead of computing the mean 
square of these differences we can compute their mean absolute value, 𝑀𝐴𝐷 (mean absolute 
deviation): 
 

 𝑀𝐴𝐷𝑤 =
1

𝑝
∙ ∑|𝑑0𝑖|

𝑝

𝑖=1

=
1

𝑝
∙ ∑|𝑥0𝑖 − 𝑚CRM|

𝑝

𝑖=1

 (15a) 

 

 𝑀𝐴𝐷 =
1

𝑝
∙ ∑|𝑑𝑖|

𝑝

𝑖=1

=
1

𝑝
∙ ∑|𝑥𝑖 − 𝑦̅𝑖|

𝑝

𝑖=1

 (15b) 

 
where the subscript “𝑤” stands for that the 𝑀𝐴𝐷 is computed from within-laboratory 
measurements only (cf. subsection AI. 4.2.1). 
 

𝑀𝐴𝐷𝑤 and 𝑀𝐴𝐷 both serve as predictions of the absolute bias, |𝐵| and can be denoted |𝐵|̂. 
Now, the expanded uncertainty based on variance components only is for the simplified model 

(3)  𝑈𝑉 = 𝑘 ∙ √𝑠𝑅𝑤

2  with 𝑘 being the coverage factor used. For within-laboratory estimation we 

would add the variance component due to the dispersion reported by the material provider, i.e.  
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𝜎CRM, giving 𝑈𝑉,𝑤 = 𝑘 ∙ √𝜎CRM
2 + 𝑠𝑅𝑤

2 . The total uncertainty (referred to as total allowable error in 

[22]) can then be computed as 
 

 𝑈𝑇,𝑤 = |𝐵|̂ + 𝑈𝑉 = |𝐵|̂ + 𝑘 ∙ √𝜎CRM
2 + 𝑠𝑅𝑤

2  (16a) 

 

 𝑈𝑇 = |𝐵|̂ + 𝑈𝑉 = |𝐵|̂ + 𝑘 ∙ √𝑠𝑅𝑤

2  (16b) 

 
 
Example 3 
Return to Example 1 and 2. 

Using the laboratory’s internal measurements and the certified value 𝑚CRM with dispersion 𝜎CRM, we compute 

𝑀𝐴𝐷𝑤 =
1

10
[|1.51996 − 1.52000| + |1.52009 − 1.52000| + ⋯ + |1.52001 − 1.52000|] ≈ 0.000145 

and the total 95% uncertainty is 

𝑈𝑇,𝑤 = 0.000145 + 2 ∙ √0.00000022 + 0.000252 ≈ 0.00065 

Using results from proficiency tests, we compute 

𝑀𝐴𝐷 =
1

10
[|1.51996 − 1.52004| + |1.52009 − 1.51992| + ⋯ + |1.52001 − 1.52000|] ≈ 0.000165 

and the total 95% uncertainty is then 

𝑈𝑇 = 0.000165 + 2 ∙ √0.000252 ≈ 0.00067 

 

 
 

AI.4.4 Expressions for general models 
 
Throughout this section we have used the simplified model (3) when deducing expressions. 
However, with more complicated models where the contributing components are more than 𝐵 

and 𝑅𝑤 the expressions are of course expanded. Generally, the expanded uncertainty 
incorporating the bias contribution can be written 
 

 𝑈 = 𝑘 ∙ √𝑀𝑆𝐷 + 𝑢𝑐,𝑉
2  (17) 

 
where 𝑢𝑐,𝑉 stands for the combined uncertainty from all components for which stable estimates 

of their variances are available (for within-laboratory estimation the component 𝜎𝐶𝑅𝑀
2  is included) 

and where 𝑀𝑆𝐷 is obtained either from within-laboratory measurements or from results from 
proficiency tests. 
 
For instance, with the model 𝑋 = 𝑚 + 𝐵 + 𝑆 + 𝐷 + 𝐸, where 𝑆 refers to the variation due to drift 
((in)stability), 𝐷 refers to the variation due to the degree of reproducibility and 𝐸 refers to the 

variation due to the degree of repeatability, and where the four random components (𝐵, 𝑆, 𝐷 and 
𝐸) are assumed independent, the expression for the expanded uncertainty would be 𝑈 = 𝑘 ∙

√𝑀𝑆𝐷 + (𝜎𝐶𝑅𝑀
2 ) + 𝑢𝑆

2 + 𝑢𝐷
2 + 𝑢𝐸

2 . 

 
Similarly, to obtain the total uncertainty the general expression can be written 
 

 𝑈𝑇 = |𝐵|̂ + 𝑘 ∙ √𝑢𝑐,𝑉
2  (18) 
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AI.5 RELATIVE VARIATION 
 
 

AI.5.1 Theoretical aspects 
 
It is the rule rather than the exception that the variation of chemical and physical measurements 
depends on the numerical magnitude of the measurand, since the measurement equipment 
cannot be assumed to provide a constant precision over the (sometimes very wide) range of 
potential values of the measurands. Therefore, it is common to use and estimate relative 
standard deviations rather than their absolute counterparts. For a random variable (cf. section 
AI.2) with average 𝜇 and standard deviation 𝜎, its relative standard deviation is defined as 
 

 %𝜎 = 100 ∙
𝜎

𝜇
 (19) 

 
The ratio 𝜎 𝜇⁄  is known as the coefficient of variation, 𝐶𝑉. Hence, if the coefficient of variation is 
assumed known for a random variable with average 𝜇, then the absolute standard deviation of 

this random variable can be calculated as 𝜎 = 𝜇 ∙ 𝐶𝑉 = 𝜇 ∙ %𝜎 100⁄ . This implies that with a 
known 𝐶𝑉 the absolute standard deviation can be estimated from a sample average, 𝑥̅, as 𝜎̂ =
𝑥̅ ∙ 𝐶𝑉. 
 
However, for the sum of two random variables, e.g. in the simplified model (3) the sum 𝐵 + 𝑅𝑤, 
the coefficient of variation is not – like for variances – the square root of sum of the squared 

coefficients of variation for the components of the sum, i.e. 𝐶𝑉𝐵+𝑅𝑤
≠ √𝐶𝑉𝐵

2 + 𝐶𝑉𝑅𝑤

2 . 

 
An alternative way to express the relative variation is to relate all standard deviations to the 
target value of the variable of interest. To exemplify, let 𝑋 be a random variable the average 

value of which is supposed to be 𝑚 (but there may be systematic deviation present), and 𝑋 can 
be written as the sum of two independent variables, 𝑋𝐴 and 𝑋𝐵, i.e. 𝑋 = 𝑋𝐴 + 𝑋𝐵. Then, letting 

𝑊 = 𝑋 𝑚⁄ , the following relation is obtained: 
 

 𝑊 =
𝑋𝐴

𝑚
+

𝑋𝐵

𝑚
 (20) 

 
The variance of 𝑊 is then 
 

 𝜎𝑊
2 =

𝜎𝑋𝐴

2

𝑚2
+

𝜎𝑋𝐵

2

𝑚2
  but also  𝜎𝑊

2 =
𝜎𝑋

2

𝑚2
 (21) 

 
 
Here, we can interpret 𝜎𝑋 𝑚⁄  as the relative standard deviation (relative to the target value), 
which can be expressed in percent if multiplicated by 100, and we note that its square is equal 
to the sum of the squared counterparts for  𝑋𝐴 and 𝑋𝐵. 
 
 

AI.5.2 Application to measurement uncertainty 
 
The expressions presented in section AI.4 for estimating the expanded uncertainty account for 
absolute uncertainty but can be modified to account for relative uncertainty. 
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AI.5.2.1 Using within-laboratory measurements 
 
When within-laboratory measurements are used to estimate the bias contribution, the value of 
the measurand is assumed known (𝑚CRM). The counterpart of 𝑀𝑆𝐷𝑤 (expression (9)) for 
estimating relative bias contribution is then the mean square relative deviation 
 

 𝑀𝑆𝐷𝑤,𝑟 =
1

𝑝
∙ ∑ (

𝑑𝑖

𝑚CRM
)

2
𝑝

𝑖=1

=
1

𝑝
∙ ∑ (

𝑥𝑖 − 𝑚CRM

𝑚CRM
)

2
𝑝

𝑖=1

=
1

𝑝
∙ ∑ (

𝑥𝑖

𝑚CRM
− 1)

2
𝑝

𝑖=1

 (22) 

 
(subscript “𝑟” refers to relative). However, note that 𝑀𝑆𝐷𝑤,𝑟 can be rewritten as 

 

𝑀𝑆𝐷𝑤,𝑟 =
1

𝑚CRM
2 ∙

1

𝑝
∙ ∑(𝑥𝑖 − 𝑚CRM)2

𝑝

𝑖=1

=
1

𝑚CRM
2 ∙ 𝑀𝑆𝐷𝑤 

 
Moreover, the standard deviation of the variation due to the degree of reproducibility within 
laboratory (𝑅𝑤) relative to 𝑚CRM is simply 𝜎𝑅𝑤

𝑚CRM⁄ , so the expression for expanded relative 

uncertainty with joint estimation of the bias contribution is 
 

 𝑈𝑤,𝑟 =
𝑘

𝑚CRM
∙ √𝑀𝑆𝐷𝑤 + 𝜎CRM

2 + 𝑠𝑅𝑤

2 =
1

𝑚CRM
∙ 𝑈𝑤 (23) 

 
The counterpart of 𝑀𝐴𝐷𝑤 (expression (15a)) is the mean absolute relative deviation 
 

 𝑀𝐴𝐷𝑤.𝑟 =
1

𝑝
∙ ∑ |

𝑑𝑖

𝑚CRM

|

𝑝

𝑖=1

=
1

𝑝
∙ ∑ |

𝑥𝑖 − 𝑚CRM

𝑚CRM

|

𝑝

𝑖=1

=
1

𝑝
∙ ∑ |

𝑥𝑖

𝑚CRM

− 1|

𝑝

𝑖=1

 (24) 

 
But analogously to the case for 𝑀𝑆𝐷𝑤,𝑟, 𝑀𝐴𝐷𝑤,𝑟 can be rewritten as 

 

𝑀𝐴𝐷𝑤,𝑟 =
1

|𝑚CRM|
∙

1

𝑝
∙ ∑|𝑥𝑖 − 𝑚CRM|

𝑝

𝑖=1

=  
1

|𝑚CRM|
∙ 𝑀𝐴𝐷𝑤 =

1

𝑚CRM
∙ 𝑀𝐴𝐷𝑤 

 
since 𝑚CRM is assumed to be > 0. 
 

Hence, the relative bias can be predicted as 𝐵̂𝑟 = 𝑀𝐴𝐷𝑤 𝑚CRM⁄  and the expression for total 
relative uncertainty is 
 

 𝑈𝑇,𝑤,𝑟 =
𝑀𝐴𝐷𝑤

𝑚CRM

+
𝑘

𝑚CRM

∙ √𝜎CRM
2 + 𝑠𝑅𝑤

2 =
1

𝑚CRM

∙ (𝑀𝐴𝐷𝑤 + 𝑘 ∙ √𝜎CRM
2 + 𝑠𝑅𝑤

2 ) =
1

𝑚CRM

∙ 𝑈𝑇,𝑤 (25) 

 

When an average of 𝑛 measurements is used, 𝑠𝑅𝑤

2  is replaced by 𝑠𝑅𝑤

2 𝑛⁄ . 
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Example 4 
Return to Example 1 and 3. 

Using internal measurements at the laboratory and the certified value 𝑚CRM, the expanded relative uncertainty 
and the total relative uncertainty become 

𝑈𝑟,𝑤 =
1

1.52000
∙ 𝑈𝑤 = 〈See Example 1〉 =

1

1.52000
∙ 0.00065 ≈ 0.00042 (= 4.2%) 

𝑈𝑇,𝑤,𝑟 =
1

1.52000
∙ 𝑈𝑇,𝑤 = 〈See Example 3〉 =

1

1.52000
∙ 0.00065 ≈ 0.00042 (= 4.2%) 

 

 

However, if the laboratory is always reporting relative uncertainties, it may be the case that 𝑠𝑅𝑤

2  

is not explicitly known, but the laboratory has a stable estimate of its relative standard deviation 
for reproducibility, i.e. %𝜎𝑅𝑤

 and the corresponding coefficient of variation is then 𝐶𝑉𝑅𝑤
=

%𝜎𝑅𝑤
100⁄ . Moreover, the uncertainty of 𝑚𝐶𝑅𝑀 may also be provided as a relative standard 

deviation %𝜎𝐶𝑅𝑀 which the corresponding coefficient of variation 𝐶𝑉𝐶𝑅𝑀 = %𝜎𝐶𝑅𝑀 100⁄ . Then 

instead of dividing everywhere with 𝑚𝐶𝑅𝑀 as is done in expressions (23) and (25) above, we 
simply obtain expressions for the expanded and total relative uncertainties as 
 

 𝑈𝑤,𝑟 = 𝑘 ∙ √𝑀𝑆𝐷𝑤,𝑟 + 𝐶𝑉CRM
2 + 𝐶𝑉𝑅𝑤

2   (26) 

 
and 
 

 𝑈𝑇,𝑤,𝑟 = 𝑀𝐴𝐷𝑤,𝑟 + 𝑘 ∙ √𝐶𝑉CRM
2 + 𝐶𝑉𝑅𝑤

2  (27) 

 
Note that a prerequisite for expressions (26) and (27) to be valid is that the coefficients of 
variation used are based on longitudinal monitoring of the variation, so that we can assume that 
𝐶𝑉CRM ∙ 𝑚CRM ≈ 𝜎CRM and 𝐶𝑉𝑅𝑤

∙ 𝑚CRM ≈ 𝜎𝑅𝑤
 (cf. the theoretical points about coefficients of 

variation in Section 5.1). 
 

 
Example 5 
Again, return to Example 1 and 3. By dividing by the certified value 𝑚CRM = 1.52000, we obtain 𝑀𝑆𝐷𝑤,𝑟 =

4.18 ∙ 10−8 1.52000⁄  and 𝑀𝐴𝐷𝑤,𝑟 = 0.000145 1.52000⁄ . Now, assume that the relative standard deviation %𝜎𝑅𝑤
 

is appreciated to be 0.016% and that the relative standard deviation %𝜎𝐶𝑅𝑀 is given to be 0.000014%. Then, 
expanded relative uncertainty with coverage 95% is 
 

𝑈𝑟,𝑤 = 2 ∙ √4.18 ∙ 10−8 1.52000⁄ + (
0.000014

100
)

2

+ (
0.016

100
)

2

≈ 0.00046 (= 0.046%) 

 
and the total relative uncertainty is 
 

𝑈𝑇,𝑤,𝑟 = 0.000145 1.52000⁄ + 2 ∙ √(
0.000014

100
)

2

+ (
0.016

100
)

2

≈ 0.00042 (= 0.042%) 

 

 

When an average of 𝑛 measurements is used, 𝐶𝑉𝑅𝑤

2  is replaced by 𝐶𝑉𝑅𝑤

2 𝑛⁄ . 
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AI.5.2.2 Using proficiency tests 
 
The situation is more complicated when results from proficiency tests are used. The counterpart 
of 𝑀𝑆𝐷 (expression (12)) would be 
 

 𝑀𝑆𝐷𝑟 =
1

𝑝
∙ ∑ (

𝑑𝑖

𝑦̅𝑖
)

2
𝑝

𝑖=1

=
1

𝑝
∙ ∑ (

𝑥𝑖 − 𝑦̅𝑖

𝑦̅𝑖
)

2
𝑝

𝑖=1

=
1

𝑝
∙ ∑ (

𝑥𝑖

𝑦̅𝑖
− 1)

2
𝑝

𝑖=1

 (28) 

 
and the counterpart of 𝑀𝐴𝐷 (expression 15(b)) would be 
 

 𝑀𝐴𝐷𝑟 =
1

𝑝
∙ ∑ |

𝑑𝑖

𝑦̅𝑖
|

𝑝

𝑖=1

=
1

𝑝
∙ ∑ |

𝑥𝑖 − 𝑦̅𝑖

𝑦̅𝑖
|

𝑝

𝑖=1

=
1

𝑝
∙ ∑ |

𝑥𝑖

𝑦̅𝑖
− 1|

𝑝

𝑖=1

 (29) 

 
Since the divisors of the terms in the sum in expressions (28) and (29) vary with the proficiency 
tests, a straightforward deduction of expressions for the expanded uncertainty like the ones of 
expressions (23) and (25) is not possible. A workaround solution is provided in section 5.2.3, 
but here we instead assume that relative standard deviation %σRw

 (and coefficient of variation 

CVRw
= %σRw

100⁄ ) are used for the contribution from reproducibility within laboratory. The 

expression for the expanded relative uncertainty with joint estimation of the bias contribution 
then becomes 
 

 𝑈𝑟 = 𝑘 ∙ √𝑀𝑆𝐷𝑟 + 𝐶𝑉𝑅𝑤

2    (30) 

 
and the expression for the total relative uncertainty becomes 
 

 𝑈𝑇,𝑟 = 𝑀𝐴𝐷𝑟 + 𝑘 ∙ 𝐶𝑉𝑅𝑤
  (31) 

 
Note that analogously to the expressions in section 4.2.2 we have not included a component 
reflecting variation in the certified values. We again refer to literature (e.g. [1]) for methods 
appreciating this contribution to the dispersion. 
 

 
Example 6 
Return to Example 2 (and 1). Using the data from the proficiency tests we can calculate 

𝑀𝑆𝐷𝑟 =
1

10
∙ [(

1.51996 − 1.52004

1.52004
)

2

+ (
1.52009 − 1.51992

1.51992
)

2

+ ⋯ + (
1.52001 − 1.52000

1.52000
)

2

] ≈ 3.06 ∙ 10−8 

and  

𝑀𝐴𝐷𝑟 =
1

10
∙ [|

1.51996 − 1.52004

1.52004
| + |

1.52009 − 1.51992

1.51992
| + ⋯ + |

1.52001 − 1.52000

1.52000
|] ≈ 0.000109 

Assume (as in Example 5) that the relative standard deviation %𝜎𝑅𝑤
 is appreciated to be 0.016% and that the 

relative standard deviation %𝜎𝐶𝑅𝑀 is given to be 0.000014%. Then, expanded relative uncertainty with coverage 
95% is 

𝑈𝑟 = 2 ∙ √3.06 ∙ 10−8 + (
0.016

100
)

2

≈ 0.00047 (= 0.047%) 

and the total relative uncertainty is 

𝑈𝑇,𝑟 = 0.000109 + 2 ∙
0.016

100
≈ 0.00043 (= 0.043%) 
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When an average of 𝑛 measurements is used, 𝐶𝑉𝑅𝑤

2  is replaced by 𝐶𝑉𝑅𝑤

2 𝑛⁄ . 

 
 

AI.5.2.3 Alternatives to using coefficients of variation 
 
Expression (28) cannot be rewritten the same way as with expression (22) since the divisor (𝑦̅𝑖) 
varies with 𝑖. Moreover, the 𝑦̅𝑖 's cannot be used to form an expression for the relative standard 

deviation based on 𝑠𝑅𝑤
.  

 
With the assumption that 𝑦̅𝑖 is very close to the target value 𝑚𝑖, a workaround for this problem 

is to substitute the overall mean of the reported results from all proficiency tests for 𝑦̅𝑖. The 
overall (unweighted) mean is 
 

  𝑦̿ =
∑ 𝑛𝑖 ∙ 𝑦̅𝑖

𝑝
𝑖=1

∑ 𝑛𝑖
𝑛
𝑖=1

  (32) 

 

However, if the 𝑛𝑖 's are similar in value,  𝑦̿ ≈ (1 𝑝⁄ ) ∙ ∑ 𝑦̅𝑖
𝑝
𝑖=1  (the weighted mean14). With this 

substitution 𝑀𝑆𝐷𝑟 (expression (28)) is approximated as 
 

 𝑀𝑆𝐷𝑟 ≈
1

𝑝
∙ ∑ (

𝑥𝑖 − 𝑦̅𝑖

𝑦̿
)

2
𝑝

𝑖=1

= (
1

𝑦̿
)

2

∙
1

𝑝
∙ ∑(𝑥𝑖 − 𝑦̅𝑖)2

𝑝

𝑖=1

= (
1

𝑦̿
)

2

∙ 𝑀𝑆𝐷 (33) 

 
It should be noted that if we now estimate the relative standard deviation of the variation due to 
the degree of reproducibility by 𝑠𝑅𝑤

𝑦̿⁄ , we introduce a random component (𝑦̿) that jeopardizes 

further the use of the intervals of expression (8) for finding the coverage factor. We have earlier 
stated that 𝑠𝑅𝑤

 should be a stable estimate (based on 50 measurements or more). The division 

by 𝑦̿ will make 𝑠𝑅𝑤
𝑦̿⁄  less stable compared to 𝑠𝑅𝑤

𝑚CRM⁄ . However, since the estimated standard 

uncertainty will be an overestimation (cf. subsection 4.2), this is probably a negligible issue when 
joint estimation of the bias contribution is used. 
 
An expression for the approximate relative expanded uncertainty using results from proficiency 
tests are used can thus be 
 

 𝑈𝑟 ≈
𝑘

𝑦̿
∙ √𝑀𝑆𝐷 + 𝑠𝑅𝑤

2 =
1

𝑦̿
∙ 𝑈 (34) 

 
Substituting the overall mean for 𝑦̅𝑖,  𝑀𝐴𝐷𝑟 (expression (29)) is approximated as 
 

 𝑀𝐴𝐷𝑟 ≈
1

|𝑦̿|
∙

1

𝑝
∙ ∑|𝑥𝑖 − 𝑦̅𝑖|

𝑝

𝑖=1

=  
1

𝑦̿
∙ 𝑀𝐴𝐷 (35) 

 
since we can assume that 𝑦̿ > 0. Analogously to the deduction of expression (34), the total 
relative uncertainty could be estimated as 
 

 𝑈𝑇,𝑟 ≈
1

𝑦̿
∙ (𝑀𝐴𝐷 + 𝑘 ∙ √𝑠𝑅𝑤

2 ) =
1

𝑦̿
∙ 𝑈𝑇 (36) 

 

 
14 It may look strange that (1 𝑝⁄ ) ∙ ∑ 𝑦̅𝑖

𝑝
𝑖=1  is referred to as a weighted mean when no weights are visible, but the 

point is that if the 𝑛𝑖 's are different then 𝑦̅𝑖′s based on fewer results (than the average of the 𝑛𝑖′s) are upweighted in 

(1 𝑝⁄ ) ∙ ∑ 𝑦̅𝑖
𝑝
𝑖=1  while 𝑦̅𝑖 's based on more results are downweighted. 
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However, since 𝑦̿ introduce further uncertainty into this expression (compared to expression 
(28)), the coverage factor may not give what is stated in the intervals (8). A remedy here could 
be to replace 𝑦̿ by the minimum of the 𝑦̅𝑖s, which would increase 𝑈𝑇,𝑟 to a level more reliable. 

When an average of 𝑛 measurements is used, 𝑠𝑅𝑤

2  is replaced by 𝑠𝑅𝑤

2 𝑛⁄ . 

 
 
Example 7 
Return to Example 2 and 3. From the results from the proficiency tests we can see that the number of 
participating laboratories between the tests vary. In the number of laboratories, the variation is not that big, but 
since the numbers are quite small (10 or lower), the relative variation between them must be considered 
substantial. Hence, we should use the overall mean in the calculations. 
 

𝑦̿ =
∑ 𝑛𝑖 ∙ 𝑦̅𝑖

10
𝑖=1

∑ 𝑛𝑖
10
𝑖=1

=
10 ∙ 1.52004 + 8 ∙ 1.51992 + ⋯ + 8 ∙ 1.52000

10 + 8 + ⋯ + 8
≈ 1.519997 

 
With this mean we calculate 
 

𝑈𝑟 =
1

1.519997
∙ 𝑈 = 〈See Example 2〉 =

1

1.519997
∙ 0.00066 ≈ 0.00043 = 0.043% 

 
and 

𝑈𝑇,𝑟 =
1

1.519997
∙ 𝑈𝑇 = 〈See Example 3〉 =

1

1.519997
∙ 0.00067 ≈ 0.00044 = 0.044% 

 
A more conservative estimate of 𝑈𝑇,𝑟is obtained by replacing 𝑦̿ by 𝑚𝑖𝑛{𝑦̅1, 𝑦̅2, … , 𝑦̅10} = 1.51986, which gives 

 

𝑈𝑇,𝑟 =
1

1.51986
∙ 0.00067 ≈ 0.00044 = 0.044% 

 
(but obviously this makes no significant difference here – they start differing in the 7th decimal). 

 

 
 

AI.5.3 Expressions for general models 
 
Like in subsections AI.4.2 and AI.4.3, the expressions in the previous section are developed 
assuming the simplified model (3), i.e. 𝑋 = 𝑚 + 𝐵 + 𝑅𝑤. 
 
For more complicated models comprising several variance components in the combined 
uncertainty, the general expressions corresponding to expressions (23), (25), (30) and (31) 
would be 
 

 𝑈𝑤,𝑟 =
𝑘

𝑚CRM
∙ √𝑀𝑆𝐷𝑤 + 𝑢𝑐,𝑉

2  (37a) 

 

 𝑈𝑇,𝑤,𝑟 =
1

𝑚CRM

∙ (𝑀𝐴𝐷𝑤 + 𝑘 ∙ √𝑢𝑐,𝑉
2 ) (37b) 

 

 𝑈𝑟 = 𝑘 ∙ √𝑀𝑆𝐷𝑟 + 𝑢𝑐,𝑉
2  (37c) 

 

 𝑈𝑇,𝑟 = 𝑀𝐴𝐷𝑟 + 𝑘 ∙ √𝑢𝑐,𝑉
2  (37d) 

 
where 𝑢𝑐,𝑉 stands for the combined uncertainty from all components for which stable estimates 

of their variances are available (cf. subsection AI.4.4). 
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AI.6 A NOTE ON INTERVALS AND THE CHOICE OF COVERAGE 
FACTOR 

 
In section AI.4.1 we stated that the interval 𝑋 ± 2 ∙ 𝜎, where 𝜎 is the true standard deviation of 

𝑋, is a 95% confidence interval for the average, 𝜇, of 𝑋. The interpretation of such an interval is 
that it will cover 𝜇 with a confidence of 95%. Theoretically, if we would repeat calculating such 

an interval procedure for each measurement we take, 95% of the intervals will cover 𝜇. 
 
In practice, the standard deviation 𝜎 is not known. For a single study comprising a limited sample 

of 𝑛 repeated measurements (𝑥1, 𝑥2, … , 𝑥𝑛), we would use their sample average 𝑥̅(𝑛) =
(1 𝑛⁄ ) ∑ 𝑥𝑖

𝑛
1  as the reported result. The sample average seen as randomly varying from sample 

to sample has the nice property that its standard deviation is 𝜎 √𝑛⁄  (hence, the more 
measurements it is built on, the more stable it will be). The corresponding 95% confidence 

interval would then be 𝑥̅(𝑛) ± 2 ∙ 𝜎 √𝑛⁄ , but 𝜎 is of course still generally unknown. Since we have 

several measurements, a natural consideration would be to replace 𝜎 by the sample standard 

deviation 𝑠 = √
1

𝑛−1
∙ ∑ (𝑥𝑖 − 𝑥̅(𝑛))

2𝑛
1  in the expression for the confidence interval. However, since 

this would introduce more variation (both 𝑥̅(𝑛) and 𝑠 would vary from sample to sample), the 

standard coverage factors (2 above) do not apply. 
 

The solution to this problem is to use the so-called (Student’s) t-distribution15 with which the 

coverage factor to be used will depend on 𝑛. It shall be said, though, that for relatively small 

values of 𝑛 the coverage factors are substantially higher than the ones used when 𝜎 is known. 
However, the t-distribution only applies to measurements that are normally distributed. 

Moreover, when the standard deviation (or rather the variance 𝜎2) is decomposed into several 
contributing components (that is typical for appreciating source of measurement error), the t-

distribution does not apply16. Several approximations have been suggested over the years, 
where the approximation lies in finding a t-distribution that is close the underlying distribution 

that would apply but is not deductible17. However, for this to work the variance components must 

have estimates that from a random point of view vary according to so-called central 𝜒2-
distributions (“chi-square”). 
 
For a standard uncertainty of the kind that we have taken up in the previous sections, e.g. one 

that can be written 𝑢 = √𝑀𝑆𝐷 + 𝑢𝑐,𝑉
2 , that last requirement is not fulfilled since 𝑀𝑆𝐷 does not 

possess such a distribution. Moreover, if one or several components of 𝑢𝑐,𝑉
2  are estimated using 

coefficients of variation (see subsection AI.5.1) these distributions do not apply either. 
 
We strongly advise that substitutions for unknown variance components should be stable 
estimates based on larger sets of previous measurements. They do then serve as negligibly 
varying substitutes and the coverage factors valid for the theoretical confidence interval can be 
applied with good approximation. 
 
When working with models using relative standard deviations it is not advised to work with t-
distributions with so-called 'effective degrees of freedom'. Besides the fact that the model of 
sums of chi-square type distributions is not met if MSD is included in the sum under the square 
root, the fact that relative measurements are random in both numerator and denominator makes 
the model of Satterthwaite, which is already complicated, basically unapplicable. 

 
15 This distribution was deduced by the Irish statistician W. Gosset in the early 1900s (but he published his results using the pseudonym 
“Student”) Biometrika 6: 1:25 
16 In the statistical literature this is referred to as Behren-Fisher’s problem. 
17 Using Satterthwaite’s approach to finding the so-called degrees of freedom for the sum of the estimated variance components. Biometrics 
2(6):110-114 
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ANNEX II. STATISTICAL SPECIFICATION OF MUCALC VERSION 3.1 
 
 

AII.1 INTRODUCTION 
 
The International Vocabulary of Metrology [4] defines uncertainty as “a non-negative parameter 
characterizing the dispersion of the quantity values being attributed to a measurand, based on 
the information used”. The quantification of the uncertainty of a measurand gives a range of 
values that contain the true value. 
 
Any analytical measurement has uncertainty associated with it. A forensic toxicologist reports 
the concentration of an analyte, e.g., THC, in 𝜇𝑔/𝐿 together with its uncertainty accumulated 
through the process of producing the measurement [23, 24]. The concentration measurement 
together with its uncertainty is considered when comparing it to a legal limit in court to determine 
the severity of an offence. 
 
The core statistical method for measure uncertainty (MU) described in this document has been 
published in [19].  The sources of uncertainty that affect MU of concentration of an analyte are: 
(1) homogeneity, (2) calibration curve, (3) method precision, (4) calibration standards, and (5) 
sample preparation. The calculation of the MU for these sources are described in dedicated 
sections. The aggregation of the MU and its applicate to calculate a confidence interval of the 
true concentration is given in the next section. 
 

𝑙 Sources of uncertainty 

1 Homogeneity 
2 Calibration curve 
3 Method precision 
4 Calibration standards 
5 Sample preparation 

Table AII-1: Indices for the sources of uncertainty 

 
 

AII.2 HOMOGENEITY 
 
Homogeneity/heterogeneity, as defined in EURACHEM/CITAC guide  [25] and IUPAC 
recommendations 1990 [26], is: 
 
"The degree to which a property or constituent is uniformly distributed throughout a quantity of 
material. Note: 
 

● A material may be homogeneous with respect to one analyte or property but 

heterogeneous with respect to another.  

● The degree of heterogeneity (the opposite of homogeneity) is the determining factor of 

sampling error." 

The property/constituent measured here is the concentration of analyte. 
 
In this section in addition to the specification of the RSU of Homogeneity, 𝑢𝑟(1), a test for 
homogeneity is described because is one of the features of MUCalc. 
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AII.2.1 Homogeneity test 
 
A one-way analysis of variance (ANOVA) is used to test the null hypotheses, 𝐻0, of equality of 

means among sample groups against the alternative hypothesis, 𝐻1, that at least two of the 
group means differ, on the assumption that samples are normally distributed, have equal 
variance and are independent [27-30]. 
 

The data consists of measurements 𝑁 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑗 measurements {𝑋𝑖,𝑗: 𝑖 = 1,2, … , 𝑛𝑗; 𝑗 =

1,2, … , 𝑘} of 𝑘 groups with means 𝑚1, 𝑚2, … 𝑚𝑘. The hypotheses of interest are 

 
𝐻0: 𝑚1 = 𝑚2 = ⋯ = 𝑚𝑘 

𝐻1: 𝑚𝑖 ≠ 𝑚𝑗  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗 

 
The test is based on a statistic 𝐹𝑠 and a critical value 𝐹𝑐, both described below. 𝐻0 is rejected if 
𝐹𝑠 ≥ 𝐹𝑐. If 𝐹𝑠 < 𝐹𝑐, we fail to reject the null hypothesis, which means that there is no evidence 
that the means differ. There should be at least two groups to compare with at least two replicates 
in each group. 
 
The statistic 𝐹𝑠 is defined as 
 

𝐹𝑠 =
𝑀𝑆𝑆𝐵

𝑀𝑆𝑆𝑊
,  

 
where, 
 

𝑀𝑆𝑆𝐵 =
∑ 𝑛𝑗(𝑋𝑗−𝑋𝑇)

2𝑘
𝑗=1

𝑘−1
    and     𝑀𝑆𝑆𝑊 =

∑ ∑ (𝑋𝑖𝑗−𝑋𝑗)
2𝑛𝑗

𝑖=1
𝑘
𝑗=1

𝑁−𝑘
. (1) 

 
𝑋𝑗 is the mean of measurement in group 𝑗 

 

𝑋𝑗 =
1

𝑛𝑗
∑ 𝑋𝑖𝑗

𝑛𝑗

𝑖=1

  

 
𝑋𝑇 is the grand mean of all measurements 

 

𝑋𝑇 = ∑ ∑ 𝑋𝑖𝑗

𝑛𝑗

𝑖=1

𝑘

𝑗=1

 (2) 

 
Under 𝐻0, 𝐹𝑠 follows and F distribution with degrees of freedom 𝜈𝑊 = 𝑘 − 1 and 𝜈𝐵 = 𝑁 − 𝑘.  The 
critical value 𝐹𝑐 is such that 𝑃𝑟 (𝑋 < 𝐹𝑐) = 1 − 𝛼, where 𝑋 follows an F distribution with degrees 

of freedom 𝜈𝐵 and 𝜈𝑊. 𝐹𝑐 is obtained from the inverse of the CDF of an F-Distribution, available 
in most statistical packages. 
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AII.2.2 Homogeneity uncertainty 
 
Homogeneity uncertainty quantifies the uncertainty associated with the between-group 
homogeneity where differences among sample groups are of interest [27-31]. Homogeneity 
uncertainty is measured with the RSU for 𝑙 = 1, 
 

𝑢𝑟(1) =
𝑢(1)

𝑋𝑇
.  

 
 𝑋𝑇 is the grand mean, Eqn. (2), 

 
𝑢(1) = max{𝑢𝑎(1), 𝑢𝑏(1)},  

 
Where 
 

𝑢𝑎(1) = √
𝑀𝑆𝑆𝐵 − 𝑀𝑆𝑆𝑊

𝑛0
,  

 
And 
 

𝑢𝑏(1) = √
𝑀𝑆𝑆𝑊

𝑛0
× √

2

𝑘(𝑛0 − 1)
.  

 
𝑀𝑆𝑆𝑊 and 𝑀𝑆𝑆𝐵 are defined in Eqn. (1), while 𝑛0 is 
 

𝑛0 =
1

𝑘 − 1
[𝑁 −

∑ 𝑛𝑗
2𝑘

𝑗=1

𝑁
].  

 
 

AII.3 CALIBRATION CURVE 
 
A calibration curve in this context is a graph that describes the relationship between instrument 
response/peak area ratio, 𝑌, and concentration, 𝑋. Uncertainty of calibration curve arises when 
a regression is used to generate a calibration model, the calibration curve is used in reverse 
form where concentration 𝑋 is predicted from the instrument response 𝑌. This prediction has an 
associated uncertainty termed uncertainty of calibration curve and it is expressed as a 
confidence interval that can be calculated using the RSU 𝑢𝑟(2). 
 
MUCalc provides three types of calibration curves: linear regression, weighted linear regression 
and quadratic linear regression. 
 
 

AII.3.1 Linear regression 
 
Linear regression is the most commonly used statistical method in calibration [32]. It is used 
when the relationship between peak area ratio and concentration is linear and satisfies the 
assumptions of a regression model: homoscedasticity and normality. 
 
A linear regression is of the form 
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𝑦 = 𝑏0 + 𝑏1𝑥 + 𝜖,     𝜖~𝑁(0, 𝜎2).  
 
where 𝑥, 𝑦 are the explanatory and response variables. The data for estimating the parameters 

are a set of concentrations of the standard, {𝑥𝑖: 𝑖 = 1,2, … , 𝑛} and their associated peak area 
ratios {𝑦𝑖: 𝑖 = 1,2, … , 𝑛}. The specification of 𝑢𝑟(2) requires the following quantities: 
 

i. the average concentration 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 ; 

ii. the set of predicted peak height ratio {𝑦̂𝑖: 𝑖 = 1,2, … , 𝑛}; 

iii. the estimated slope  𝑏̂1;  

iv. the standard error of regression 

 

𝑆𝑦/𝑥 = √ 
∑ (𝑦𝑖 − 𝑦𝑖̂ )

2𝑛
𝑖=1

𝑛 − 2
;  

 

v. the sum of squares deviation 

 

𝑆𝑥𝑥 =  ∑(𝑥𝑖 −  𝑥̅)2

𝑛

𝑖

.  

 
The RSU of calibration curve, 𝑢𝑟( 𝒙𝑠), for a given case sample mean concentration, 𝒙𝑠, is 
 

𝑢𝑟( 𝒙𝑠) =  
𝑢( 𝒙𝑠)

𝒙𝑠
,  

 
where 𝑢( 𝒙𝑠) is the standard uncertainty of the calibration curve [33], 
 

𝑢( 𝒙𝑠) =  
𝑆𝑦/𝑥

𝑏1

√
1

𝑟𝑠
+ 

1

𝑛
+  

(𝒙𝒔 − 𝑥̅ )2

𝑆𝑥𝑥
,  

 
and 𝑟𝑠 is the number of replicates made on the test sample to determine 𝒙𝑠. 
 
 

AII.3.2 Weighted linear regression 
 
Weighted linear regression (WLR) is used if the standard deviation of peak area ratio correlates 
with the magnitude of the concentration. The specification of RSU of calibration curve 𝑢𝑟(2) 
requires the following quantities either in addition to or that differ from a linear regression: 
 

i. a set of weights {𝑊𝑖: 𝑖 = 1,2, … , 𝑛}; 

ii. a set of standardised weights {𝑤𝑖: 𝑖 = 1,2, … , 𝑛} where 
 

𝑤𝑖 = 𝑊𝑖 ×
𝑛

∑ 𝑊𝑖
𝑛
𝑖=1

;  

 
iii. the standard error 
 

𝑆𝑤𝑦/𝑥
= √ 

∑ 𝑤𝑖(𝑦𝑖 −  𝑦𝑖̂ )
2𝑛

𝑖=1

𝑛 − 2
;  
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iv. the sum of squares deviation  

𝑆𝑥𝑥𝑤
=  ∑ 𝑤𝑖

𝑛

𝑖

(𝑥𝑖 − 𝑥̅)2.  

 
The RSU 𝑢𝑟(2)  for a mean concentration 𝒙𝒔 is 
 

𝑢𝑟(2) =  
𝑢(2)

𝒙𝑠
  

 
Where [35,36] 
 

𝑢(2) =  
𝑆𝑤𝑦/𝑥

𝑏1
√

1

𝑤𝑠𝑟𝑠
+  

1

𝑛
+ 

(𝒙𝒔 −  𝑥̅𝑤  )2

𝑆𝑥𝑥𝑤

.  

 
 
𝑥̅𝑤 is the weighted mean value of concentrations given by 
 

𝑥̅𝑤 =
1

𝑛
∑ 𝑤𝑖𝑥𝑖(𝑖=1)6𝑛 ,  

 
and 𝑤𝑠 is the standardised weight of 𝒙𝒔. 
 
 

AII.3.3 Quadratic regression 
 
Quadratic regression is used when the peak height ration follows a quadratic polynomial as a 
function of concentration. Using the approach described by [33], a quadratic regression can be 
written as 
 

𝑦 − 𝑦 ̅ = 𝑏1(𝑥 −  𝑥̅) + 𝑏2(𝑥2 − 𝑥2̅̅ ̅) + 𝜖,     𝜖~𝑁(0, 𝜎2),  

 
to make the regression curve to start from the origin (𝑏0 = 0). 
 
Given an instrument response of case sample peak area ratio, 𝑦𝑠, the level of concentration 𝒙𝒔 is 

estimated by solving for 𝑥 as while treating 𝑥̅ and 𝑥2̅̅ ̅ as constants, 
 

𝒙̂𝒔  =  
−𝑏1√𝑏1

2  −  4𝑏2(𝑦 ̅ −   𝑦𝑠 −  𝑏1𝑥 ̅  −  𝑏2𝑥 2̅̅ ̅̅  )

2𝑏2
. 

(3) 

 

The standard uncertainty of calibration curve, 𝑢(2)2 is the same as 𝑉𝑎𝑟(𝒙̂𝒔) and is obtained by 
applying Taylor's theorem 
 

𝑢(2)2  = (
𝑑𝒙̂𝒔

𝑑𝑏1
)

2

𝑉𝑎𝑟(𝑏1) + (
𝑑𝒙̂𝒔

𝑑𝑏2
)

2

𝑉𝑎𝑟(𝑏2) + (
𝑑𝒙̂𝒔

𝑑𝑦̅
)

2

𝑉𝑎𝑟(𝑦̅)  + (
𝑑𝒙̂𝒔

𝑑𝑦𝑠
)

2

𝑉𝑎𝑟(𝑦𝑠) + 2 (
𝑑𝒙̂𝒔

𝑑𝑏1
) (

𝑑𝒙̂𝒔

𝑑𝑏2
) 𝐶𝑜𝑣(𝑏1, 𝑏2).  

 

 
The partial derivatives are obtained by differentiating Eqn. (3) with respective to  𝑏1, 𝑏2, 𝑦̅ and 
 𝑦𝑠: 
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𝑑𝒙̂𝒔

𝑑𝑏1
=   

−1 + 1
2⁄ 𝐷−1 2⁄ (2𝑏1 + 4𝑏2𝑥̅)

𝑏2
  

𝑑𝒙̂𝒔

𝑑𝑏2
=

𝑏1 − 𝐷1 2⁄

2𝑏2
2 

+  
1

2⁄ 𝐷 −1 2⁄ (4𝑦𝑠 − 4𝑦̅ + 4𝑏1𝑥̅ + 8𝑏2𝑥2̅̅ ̅)

2𝑏2
.  

𝑑𝒙̂𝒔

𝑑𝑦̅
= −𝐷−1 2⁄ .  

𝑑𝒙̂𝒔

𝑑𝑦𝑠
= 𝐷−1 2⁄ .  

 
𝐷 is the discriminant of 𝑥, 
 

𝐷 =  𝑏1
2 − 4𝑏2(𝑦̅ − 𝑦𝑠 − 𝑏1𝑥̅ −  𝑏2𝑥2̅̅ ̅).  

 
𝑉𝑎𝑟(𝑏1), 𝑉𝑎𝑟(𝑏2) and 𝐶𝑜𝑣(𝑏1, 𝑏2) can be obtained from the covariance matrix described in 
section AII.9. 
 
The variance of  𝑦̅ and  𝑦𝑠  are 
 

𝑉𝑎𝑟(𝑦̅) =  
𝑆𝑦/𝑥

2

𝑛
  and  𝑉𝑎𝑟(𝑦𝑠) =  

𝑆𝑦/𝑥
2

𝑟𝑠
 

 
where  

𝑆𝑦/𝑥 = √ 
∑ (𝑦𝑖 −  𝑦𝑖̂ )

2𝑛
𝑖=1

𝑛 − 3
.  

  
 

AII.3.4 Pooled standard error of regression 
 
If quality control data is available that considers different laboratory conditions over different 
days, the standard error of regression of these calibration curves can be pooled together to 
obtain a better estimate. The pooled estimate can be calculated when the same type of 
regression model is used in all the calibration curves. 
 
The pooled standard error of regression for 𝑚 calibration curves each with 𝑛𝑗 data points and 

standard error of regression 𝑆𝑦/𝑥(𝑗)
 , 𝑗 = 1,2, … , 𝑚, is 

 

𝑆𝑝 = √ 
∑ (𝑛𝑗 − 1)𝑆𝑦/𝑥(𝑗)

2𝑚
𝑗=1

∑ (𝑛𝑗 − 1)𝑚
𝑗=1

.  

 
𝑆𝑝 replaces 𝑆𝑦/𝑥 in the calculation of the standard uncertainty of calibration, 𝑢(2). 
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AII.4 METHOD PRECISION 
 
Method precision measures the variability in the results of a repeated experiment under similar 
conditions. Given the repeated analysis of a given sample, the variability associated with a 
method can be quantified. 
 
The uncertainty of method precision, 𝑢(3), for a case sample with mean concentration 𝒙𝒔 is 

obtained from a set of method precision uncertainties {𝑢(3, 𝑁𝑉): 𝑁𝑉 = 1,2, … , 𝑛𝑁𝑉} calculated for 
a set of concentration nominal values. Specifically, the standard uncertainty for method precision 
is set to 𝑢(3) = 𝑢(3, 𝑁𝑉∗) where 𝑁𝑉∗ is the closest value to 𝒙𝒔: 
 

𝑁𝑉∗ = arg min
𝑁𝑉

{|𝑁𝑉 − 𝒙𝒔|: 𝑁𝑉 = 1,2, … , 𝑛𝑁𝑉}.  

 
The data for calculating 𝑢(3, 𝑁𝑉∗) consist of concentrations measurements obtained from 𝑛𝑟𝑢𝑛𝑠 
and 𝑛𝑖 measurement in each run. Specifically, 
 

{𝑥𝑁𝑉∗,𝑖,𝑗: 𝑖 = 1,2, … , 𝑛𝑟𝑢𝑛𝑠; 𝑗 = 1,2, … , 𝑟𝑠}  

 
The standard deviation for each run, 𝑆𝑁𝑉,𝑖. The spooled standard deviation is then calculated 

 

𝑆𝑝(𝑁𝑉∗) = √
∑ 𝑆𝑁𝑉∗,𝑖

2 × (𝑟𝑠 − 1)
𝑛𝑟𝑢𝑛𝑠
𝑖=1  

∑ (𝑟𝑠 − 1)
𝑛𝑟𝑢𝑛𝑠
𝑖=1  

.  

 
The standard uncertainty of method precision is then calculated as [34], 
 

𝑢(3) = 𝑢(3, 𝑁𝑉∗) =
𝑆𝑝,𝑁𝑉∗

√𝑟𝑠

.  

 
The RSU of method precision is then calculated as 
 

𝑢𝑟(3) =
𝑢(3)

𝑥̅𝑁𝑉∗
,  

 
where 𝑥̅𝑁𝑉∗ is the mean concentration of all samples for 𝑁𝑉∗ across all runs, 
 

𝑥̅𝑁𝑉∗ =
1

𝑛𝑟𝑢𝑛𝑠𝑟𝑠
∑ ∑ 𝑥𝑁𝑉∗,𝑖,𝑗

𝑟𝑠

𝑗=1

𝑛𝑟𝑢𝑛𝑠

𝑖=1

  

 
 

AII.5 CALIBRATION STANDARD 
 
The uncertainty associated with calibration standard combines the uncertainty from the 
reference materials and the solution preparation. The uncertainty from the reference materials 
is stated in the certificates of analysis of certified reference materials (CRMs) while the 
uncertainties in solution preparation comes from inaccuracies of the measuring equipment, e.g. 
pipettes and volumetric flasks, used to dilute CRMs and spike blank samples when preparing 
solutions for a calibration curve. 
 
The quantification of the uncertainties in the preparation process requires information on the 
steps involved in the solution preparation and details of the equipment used. These steps may 
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be different from laboratory to laboratory. Table AII-2 shows an example of the structure of 
calibration standard preparation. 
 
 

Solution Notation 
Parent 

Solution 
Equipment 

Number of 
Equipment 

Volume 
Tolerance 
Coverage 

No. of 
Times 
Used 

Stock Solution A SSA RSS 𝐸𝑞𝑆𝑆𝐴,𝑖 𝑁𝐸𝑞,𝑆𝑆𝐴 
𝐸𝑞𝑆𝑆𝐴,𝑖,𝑣𝑜𝑙 
𝐸𝑞𝑆𝑆𝐴,𝑖,𝑡𝑜𝑙 
𝐸𝑞𝑆𝑆𝐴,𝑖,𝑐𝑜𝑣 

𝑁𝐸𝑞,𝑆𝑆𝐴,𝑖 

Working Solution 
B 

WSB SSA 𝐸𝑞𝑊𝑆𝐵,𝑖 𝑁𝐸𝑞,𝑊𝑆𝐵 
𝐸𝑞𝑊𝑆𝐵,𝑖,𝑣𝑜𝑙 
𝐸𝑞𝑊𝑆𝐵,𝑖,𝑡𝑜𝑙 
𝐸𝑞𝑊𝑆𝐵,𝑖,𝑐𝑜𝑣 

𝑁𝐸𝑞,𝑊𝑆𝐵,𝑖 

Working Solution 
C 

WSC SSA 𝐸𝑞𝑊𝑆𝐶,𝑖 𝑁𝐸𝑞,𝑊𝑆𝐶 
𝐸𝑞𝑊𝑆𝐶,𝑖,𝑣𝑜𝑙 
𝐸𝑞𝑊𝑆𝐶,𝑖,𝑡𝑜𝑙 
𝐸𝑞𝑊𝑆𝐶,𝑖,𝑐𝑜𝑣 

𝑁𝐸𝑞,𝑊𝑆𝐵,𝑖 

Calibrator Range 
1 

𝐶𝑅1 WSC 𝐸𝑞𝐶𝑅1,𝑖 𝑁𝐸𝑞,𝐶𝑅1 
𝐸𝑞𝐶𝑅1,𝑖,𝑣𝑜𝑙 
𝐸𝑞𝐶𝑅1,𝑖,𝑡𝑜𝑙 
𝐸𝑞𝐶𝑅1,𝑖,𝑐𝑜𝑣 

𝑁𝐸𝑞,𝐶𝑅1,𝑖 

Calibrator Range 
2 

𝐶𝑅2 WSB 𝐸𝑞𝐶𝑅2,𝑖 𝑁𝐸𝑞,𝐶𝑅2 
𝐸𝑞𝐶𝑅2,𝑖,𝑣𝑜𝑙 
𝐸𝑞𝐶𝑅2,𝑖,𝑡𝑜𝑙 
𝐸𝑞𝐶𝑅2,𝑖,𝑐𝑜𝑣 

𝑁𝐸𝑞,𝐶𝑅2,𝑖 

Table AII-2: Solutions and their required information. In addition, the reference standard solution (RSS) purity 
(RSS_purity), tolerance (RSS_tol) and coverage (RSS_cov) are also required. 

 
For example, the preparation for stock solution A, denoted SSA, requires a set of equipment 

consisting of 𝑁𝐸𝑞,𝑆𝑆𝐴 pipettes and flasks, denoted {𝐸𝑞𝑆𝑆𝐴,𝑖: 𝑖 = 1,2, … , 𝑁𝐸𝑞,𝑆𝑆𝐴}. There are other 

quantities needed for each equipment and these are volume (𝐸𝑞𝑆𝑆𝐴,𝑖,𝑣𝑜𝑙), coverage (𝐸𝑞𝑆𝑆𝐴,𝑖,𝑐𝑜𝑣), 

and the number of times that this equipment is used (𝑁𝐸𝑞,𝑆𝑆𝐴,𝑖). 

 
A tree diagram can be drawn from the input file to represent the dependence of solution 
preparation where an arrow from solution 1 to solution 2 means that solution 2 is made from 
solution 1. For example, in  
Figure AII-1, RSS is the parent solution of SSA which means that SSA is made from RSS. 
 

 

 

Figure AII-1: A diagrammatic representation of the preparation of solutions from other solutions based on the 
input file. 

The diagram in  
Figure AII-1 is used to describe the calculation of the RSU of calibration standards, 𝑢𝑟(4): 
 

𝑢𝑟(4) = √{𝑢𝑟(𝐶𝑅1)}2 + {𝑢𝑟(𝐶𝑅2)}2  
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The calculation of 𝑢𝑟(𝐶𝑅𝑖), 𝑖 ∈ {1,2}, is achieved by calculating first the RSU of the founder node 
RSS and then the RSU of the solutions in following the arrows from RSS. 
 
 
The RSU for RSS is calculated with 
 

𝑢𝑟(𝑅𝑆𝑆) =
𝑢(𝑅𝑆𝑆)

𝑅𝑆𝑆𝑝𝑢𝑟𝑖𝑡𝑦
=

𝑅𝑆𝑆𝑡𝑜𝑙
𝑅𝑆𝑆𝑐𝑜𝑣

𝑅𝑆𝑆𝑝𝑢𝑟𝑖𝑡𝑦
.  

 
The RSU for the rest of the solutions is obtained iteratively based on the RSU of the parent 
solution and on the RSU of all the equipment used: 
 

𝑢𝑟(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) = √{𝑢𝑟(𝑃𝑎𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)}2 + ∑ [{𝑢𝑟(𝐸𝑞𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖)}
2

+ 𝑁𝐸𝑞,𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖]

𝑁𝐸𝑞,𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖

𝑖=1

  

 
The RSU for equipment 𝐸𝑞𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖 is calculated with the formula, 

 

𝑢𝑟(𝐸𝑞𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖) =

𝐸𝑞𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖,𝑡𝑜𝑙

𝐸𝑞𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖,𝑐𝑜𝑣

𝐸𝑞𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑖,𝑣𝑜𝑙
. 

 

 

 
Using the formula for the RSU of a solution applied to SSA, 
 

𝑢𝑟(𝑆𝑆𝐴) = √{𝑢𝑟(𝑅𝑆𝑆)}2 + ∑ [{𝑢𝑟(𝐸𝑞𝑆𝑆𝐴,𝑖)}
2

× 𝑁𝐸𝑞,𝑆𝑆𝐴,𝑖] .

𝑁𝐸𝑞,𝑆𝑆𝐴

𝑖=1

  

 
Then 
 

𝑢𝑟(𝑊𝑆𝐵) = √{𝑢𝑟(𝑆𝑆𝐴)}2 + ∑ [{𝑢𝑟(𝐸𝑞𝑊𝑆𝐵,𝑖)}
2

× 𝑁𝐸𝑞,𝑊𝑆𝐵,𝑖]

𝑁𝐸𝑞,𝑊𝑆𝐵

𝑖=1

,  

 
and, 
 

𝑢𝑟(𝑊𝑆𝐶) = √{𝑢𝑟(𝑆𝑆𝐴)}2 + ∑ [{𝑢𝑟(𝐸𝑞𝑊𝑆𝐶,𝑖)}
2

× 𝑁𝐸𝑞,𝑊𝑆𝐶,𝑖]

𝑁𝐸𝑞,𝑊𝑆𝐶

𝑖=1

.  

 
Finally, 

𝑢𝑟(𝐶𝑅1) = √{𝑢𝑟(𝑊𝑆𝐶)}2 + ∑ [{𝑢𝑟(𝐸𝑞𝐶𝑅1,𝑖)}
2

× 𝑁𝐸𝑞,𝐶𝑅1,𝑖] ,

𝑁𝐸𝑞,𝑊𝑆𝐶

𝑖=1

  

 
and, 
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𝑢𝑟(𝐶𝑅2) = √{𝑢𝑟(𝑊𝑆𝐵)}2 + ∑ [{𝑢𝑟(𝐸𝑞𝐶𝑅2,𝑖)}
2

× 𝑁𝐸𝑞,𝐶𝑅2 ,𝑖]

𝑁𝐸𝑞,𝑊𝑆𝐶,𝑖

𝑖=1

.  

 
 

 

AII.6 SAMPLE PREPARATION 
 
The RSU of sample preparation, 𝑢𝑟(5), combines uncertainty sources from the use of equipment 
in preparing a sample, such as weighing balance, pipette, and volumetric flask.  
The RSU of sample preparation is 
 

𝑢𝑟(5) = √ ∑ [{𝑢𝑟(𝐸𝑞𝑠𝑎𝑚𝑝𝑙𝑒,𝑖)}
2

× 𝑁𝐸𝑞,𝑠𝑎𝑚𝑝𝑙𝑒,𝑖]

𝑁𝐸𝑞,𝑠𝑎𝑚𝑝𝑙𝑒,𝑖

𝑖=1

.  

 
where 
 

𝑢𝑟(𝐸𝑞𝑠𝑎𝑚𝑝𝑙𝑒,𝑖) =

𝐸𝑞𝑠𝑎𝑚𝑝𝑙𝑒,𝑖,𝑡𝑜𝑙  
𝐸𝑞𝑠𝑎𝑚𝑝𝑙𝑒,𝑖,𝑐𝑜𝑣

𝐸𝑞𝑠𝑎𝑚𝑝𝑙𝑒,𝑖,𝑐𝑎𝑝
. 

 

 
and 𝑁𝐸𝑞,𝑠𝑎𝑚𝑝𝑙𝑒,𝑖 is the number of times that equipment 𝐸𝑞𝑠𝑎𝑚𝑝𝑙𝑒,𝑖 is used in the preparation of a 

given sample. 
 
 

AII.6.1 Combined Uncertainty 
 
The combined uncertainty 𝑢𝑐 is obtained by combining all the individual uncertainty components 
for which data is uploaded for. 
 
If data is uploaded for all the uncertainty components; Homogeneity, Calibration Curve, Method 
Precision, Calibration Standard and Sample Preparation, relative standard uncertainty is 
computed for each uncertainty component using the methods described above in section AII.1-
AII.5, and are combined to obtain the overall uncertainty of the analytical process 
 
For 𝑙 uncertainty sources/components with individual standard uncertainty u(𝑙), the combined 

uncertainty, 𝑢𝑐, for a given case sample mean concentration, 𝒙𝒔, is given by 
 

𝑢𝑐 = 𝒙𝒔√∑ 𝑢𝑟(𝑙)2

𝑙

, (1) 
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AII.7 COVERAGE FACTOR AND EFFECTIVE DEGREES OF 
FREEDOM 

 
A coverage factor is a number chosen to determine the level of confidence to be associated with 
data points within a desired standard deviation. Alternatively, A coverage factor, 𝑘, for specified 
level of confidence, 𝐶𝐿, and effective degrees of freedom, 𝑣eff, is a number, 𝑘𝑣eff,𝐶𝐿%, usually 

greater than one from which an expanded uncertainty, 𝑈𝑒𝑥𝑝, is obtained when multiplied by a 

combined standard uncertainty, 𝑢𝑐. 
 
To determine a suitable coverage factor, a specified level of confidence, 𝐶𝐿, is required along 
with knowledge about the effective degrees of freedom, 𝑣eff, of all uncertainty components. 
 
An effective degree of freedom is computed using the Welch-Satterthwaite equation [32] given 
by 
 

𝑣eff =  
(

𝑢𝑐
𝑥𝑠

)
4

∑
𝑢𝑟(𝑙)4

𝑣(𝑙)

 

 
The derived effective degrees of freedom along with the specified 𝐶𝐿% is used to read a value 
termed coverage factor, 𝑘𝑣eff,𝐶𝐿%,  from the T-Distribution. Alternatively, MUCalc allows one to 

specify a number directly for the coverage factor.  
 
 

AII.8 EXPANDED UNCERTAINTY 
 
The expanded uncertainty, 𝑈𝑒𝑥𝑝, is the final step of measurement uncertainty computation. This 

is done to derive a confidence interval believed to contain the true unknown value. 
 
The expanded uncertainty is computed by multiplying the combined uncertainty, 𝑢𝑐, with the 
coverage factor 𝑘𝑣eff,𝐶𝐿% 

 
𝑈𝑒𝑥𝑝 =  𝑢𝑐  x 𝑘𝑣eff,𝐶𝐿%  

The percentage expanded uncertainty, %𝑈𝑒𝑥𝑝, is given by 

 

%𝑈𝑒𝑥𝑝 =  
𝑈𝑒𝑥𝑝

𝒙𝒔
 x 100  

 
The confidence interval of the true concentration is calculated as 
 

(𝒙𝒔 − 𝑢𝑐𝑘𝑣eff,𝐶𝐿%,  𝒙𝒔 + 𝑢𝑐𝑘𝑣eff,𝐶𝐿%).  

 
 

AII.9 COVARIANCE MATRIX 
 
Given a regression model of the form 
 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑧 
 
The design matrix is of the form 
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X= [
1   
𝑥1   
𝑧1   

1   
𝑥2  
𝑧2   

1   
𝑥3   
𝑧3   

1   
𝑥4   
𝑧4   

…   
…   
…   

1
𝑥𝑛

𝑧𝑛

] 

 
The covariance matrix is given by 
 

𝜎2× (𝑋𝑇𝑋)−1= [

𝑉𝑎𝑟(𝑏0)   

𝐶𝑜𝑣(𝑏0, 𝑏1)   

𝐶𝑜𝑣(𝑏0, 𝑏2)   

𝐶𝑜𝑣(𝑏0, 𝑏1)   

𝑉𝑎𝑟(𝑏1)  

𝐶𝑜𝑣(𝑏1, 𝑏2)   

𝐶𝑜𝑣(𝑏0, 𝑏2)   

𝐶𝑜𝑣(𝑏1, 𝑏2)   

𝑉𝑎𝑟(𝑏2)   
] 

 
where the standard error of regression 𝑆𝑦 𝑥⁄  is used as an estimate for the standard deviation 𝜎. 

 
 

AII.10 NOTATION 
 

𝐻0, 𝐻1 Null and alternative hypotheses in a statistical hypothesis testing setting 

𝑙 
index for sources of uncertainty: homogeneity (𝑙 = 1), calibration curve (𝑙 = 2), 
method precision (𝑙 = 3), calibration standards (𝑙 = 4), and sample preparation 

(𝑙 = 5). 

𝑢𝑐 combined standard uncertainty 

𝑢(𝑙) standard uncertainty for uncertainty source  𝑙 

𝑢𝑟(𝑙) relative standard uncertainty for uncertainty source  𝑙 

𝜈(𝑙) degrees of freedom associated to source of uncertainty 𝑙 

𝑣eff effective degrees of freedom 

𝒙𝒔 average case sample concentration 

ys average case sample peak area ratio 

𝑀𝑆𝑆𝐵 mean square error between sample groups 

𝑀𝑆𝑆𝑊 mean square error within sample groups 

𝐹𝑐 critical value obtained from the inverse of the CDF of an F-Distribution 

RSU : relative standard uncertainty 
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